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Abstract

We construct a driven sandpile slope model and study it by numerical sim-

ulations in one dimension. The model is specified by a threshold slope σc, a

parameter α, governing the local current-slope relation (beyond threshold),

and jin, the mean input current of sand. A nonequilibrium phase diagram is

obtained in the α − jin plane. We find an infinity of phases, characterized

by different mean slopes and separated by continuous or first-order bound-

aries, some of which we obtain analytically. Extensions to two dimensions are

discussed.
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The statistical mechanics of nonequilibrium steady states is a subject of growing general

interest. Phase transitions between such states are by no means as well understood as

their equilibrium counterparts. Some insight has been gained into this problem by the

study of simple driven lattice models [1,2]. Sandpile models, which introduced the notion

of self-organized criticality (SOC) [3] as a general explanation for the wide occurrence of

power laws in nature, are a natural setting in which to study phase transitions far from

equilibrium. Surprisingly, to our knowledge, this has not been attempted. We construct

a driven sandpile model and show that it exhibits, in spite of its simplicity, a rich phase

diagram, thus making it a good laboratory for the study of nonequilibrium phenomena. In

particular, our model exhibits continuous transitions from pinned or threshold-dominated

states to unpinned states; these are reminiscent of dynamical phase transitions in more

complex systems such as sliding charge-density waves (CDW’s) [4] and pinned flux-lattices

[5].

Earlier studies of sandpile models have concentrated on SOC, either in steadily flowing

sandpiles [6,7] or at the angle of repose [8]. Much of the work has been on critical-height

models, in which the update rule depends only on the height at each site; critical-slope models

(CSM) [8] have been studied to a lesser extent. In this Letter, we present a comprehensive

study of a simple CSM in which the current-slope relation for slopes exceeding a threshold

is controlled by a parameter α. We monitor the steady states of our model as a function of

α and the mean input current jin and find the rich nonequilibrium phase diagram (Fig. 1):

It shows that there are many phases characterized by the average slope σav of the sandpile.

In the repose phase, σav = σc, the slope at the angle of repose. As jin is increased at fixed

α, the repose phase undergoes a continuous transition (solid line) to an unpinned super-

repose phase at which σav − σc rises continuously from zero with an exponent β ≃ 0.5 (Fig.

2). This continuous transition is followed by a series (which we argue is infinite) of similar

continuous transitions. The repose phase lies between two first-order boundaries: one at low

α to a pinned super-repose (σav > σc) region, the other at large α, to a sub-repose phase

(σav < σc). The lower one of these first-order lines meets the continuous line at jin = 0.5 at a
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multicritical point. The pinned super-repose region contains an infinity of phases, separated

by first-order lineœs parallel to the jin axis (Fig. 1); σav jumps at these boundaries. We

also monitor height profiles, the equal-time height correlation function and the associated

correlation length, and current autocorrelations and the associated correlation time. Both

the correlation length and time (Fig. 3) diverge at the continuous transitions in Fig. 1. We

show that our main results can be understood on the basis of a mean-field theory and a

mode-softening argument.

In our model, integers hi specify the heights of columns of sand at the sites i of a one-

dimensional chain (1 ≤ i ≤ N). The stability of the column at a site is determined by a

threshold condition which mimics the angle of repose for a real sandpile: When the height

difference between a site i and its right neighbor (i + 1) (i.e., the local slope σi = hi − hi+1)

exceeds σc, some sand topples to the right neighbor, and hi is updated via

hi → hi − ji , hi+1 → hi+1 + ji , (1)

ji = N (α × σi)Θ(σi − σc) . (2)

N (x) is the integer nearest to x, Θ the step function, and α a real number. This part of

our update rule conserves the number of particles locally and yields a local current which

increases with the local slope, thus preventing an unbounded buildup of particles in the pile

[9]. The parameter α controls the current-slope relation for slopes exceeding σc. We restrict

our study to α > 0, since α ≤ 0 yields unphysical runaway behavior; the upper bound for

α is chosen to limit the region we explore. The mean input current of sand particles jin is

another control parameter. At each time step, we add m particles to a randomly chosen site

with probability p, so jin = p×m. We set m = 10 for specificity (our results do not depend

on this choice) and cover the range 0.001 ≤ p ≤ 0.15, so 0.01 ≤ jin ≤ 1.5. This addition

of particles violates local particle conservation; and, for such an addition rate, the mean

input current and the noise amplitude per site vanish as N → ∞. Particles are allowed to

leave our system through the right, but not the left (i = 1), boundary: any particle that
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reaches the N th site is removed immediately. Our boundary conditions and update rules

(1-2) clearly pick a direction for the current (from left to right).

We use initial conditions in which hi = σc(N − i)+δi, where δi is an integer that assumes

the values 0, ±1 with equal probability. We update all sites simultaneously and allow the

system to evolve till it attains a steady state, i.e., when jin = jout, the average output current

(the average number of particles dropping out from the open boundary per unit time). In

practice, we say that the steady state has been achieved when these two currents are within

1% of each other. Once the steady state is obtained [10], we accumulate data for 105 − 106

updates per site (UPS). Data for averages are stored after every 50 UPS. We also average

our data over 10− 50 different initial conditions. To minimize boundary effects we ignore a

few sites (three or more if necessary) near each boundary while computing all averages.

The nonequilibrium steady state of our model can be characterized by the mean slope

σav (the local slope σi averaged over i and many time steps), which is the order parameter

for our model. We also monitor the mean current jav, the output current jout, the equal-time

height correlation function Chh(r) = 〈〈[ht
i − 〈hi〉t][ht

i+r − 〈hi+r〉t]〉i〉t, and the output current

autocorrelation function Cjj(τ) = 〈[jt
out − 〈jout〉t][j

t+τ
out − 〈jout〉t]〉t, where 〈· · ·〉i and 〈· · ·〉t

denote, respectively, averages over i and time t.

In Fig. 2 the asymptotes (dashed lines) σav = σc and σav = jin/(2α) indicate the behavior

of σav at very low (< 0.5) and very large (≫ 0.5) jin, respectively. The full curve (for α = 0.1

and N = 128 in Fig. 2) shows that the approach to these limits is nontrivial: As jin increases

there are successive onsets, indicated by arrows. There might well be an infinity of such

onsets (see below), but they become hard to resolve numerically at large jin. The inset shows

a finite-size scaling plot at the first of these onsets. For jin
<
∼ 0.5 , σav = σc = 10, i.e., we

have threshold-dominated behavior at low jin. The asymptotic behaviors can be understood

via the mean-field theory presented below.

The evolution equation for ht
i is

ht+1
i − ht

i = −jt
i + jt

i−1 + ηt
i , (3)
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where the noise ηt
i has a mean jin/N that accounts for the addition of particles. If we average

over this noise, then, in the steady state, we get ji−ji−1 = jin/N . If we impose the boundary

condition ji=N = jin, we get ji = ijin/N and thence a mean current jav = 〈〈ji〉i〉t = N+1

2N
jin ≈

jin/2 for N → ∞. We use these exact results to check our simulation. Our mean-field theory

assumes that

〈〈N (ασi)Θ(σi − σc)〉i〉t ≃ 〈〈N (ασi)〉i〉t 〈〈Θ(σi − σc)〉i〉t . (4)

For large jin, most σi > σc, so we further assume 〈〈Θ(σi − σc)〉i〉t ≃ 1. If its argument is

large, the discontinuities of N (ασi) are small relative to ασi, so, on averaging Eq. (2), we

make the approximation jav = 〈〈N (ασi)〉i〉t = ασav, whence σav ≈ jin/(2α), the large-jin

asymptote of Fig. 2. Given these approximations, Eq.(3) yields a discrete diffusion equation

for ht
i with a spatially uniform source jin/N . If we solve this with our boundary conditions

we get parabolic height profiles for large jin, which we also find in our simulations [11].

The the current-slope relation Eq. (2), shows that (Fig. 4), for a uniform profile with

slope σ, no current flows if σ ≤ σc. For σ > σc, the current grows with the slope in discrete

steps, which reflect the N function in Eq. (2). As we increase α, the width of the step at

ji = 1 shrinks till it becomes a single point at α = 0.125, the value at which the continuous

transition at jin = 0.5 (Fig. 1) terminates. This can be understood as follows: If we turn

Fig. 4 on its side, we see that the slope is pinned at σc below some threshold value of ji.

Beyond this threshold, the slope rises sharply before it saturates at another value of σ. The

onsets in Fig. 2 are just the sharp steps of Fig. 4 rounded by our spatiotemporal average.

The vanishing of a step in Fig. 4 can also be linked with the termination of the continuous

line via a mode-softening argument. Consider, e.g., the step at ji = 1 for which the 11 ≤

σi ≤ 14 (Fig. 4 with α = 0.1). All slopes σi in this interval are equivalent in the sense that

the sandpile dispenses the same amount of local current for all of them. Thus the restoring

force, in response to a change of an onsite slope from σ to σ + 1, vanishes and leads to

divergent correlation lengths and relaxation times (Fig. 3). Clearly the infinity of steps in

Fig. 4 imply an infinity of onsets in Fig. 2, though the large-jin onsets are hard to resolve
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numerically.

The above arguments do not yield the value of jin at onset since our spatiotemporal

average shifts the values of the thresholds in Fig. 4. The actual value of jin at the onset

depends on the distribution of slopes in the interior of the pile. We have done some numerical

and analytic calculations [11] on a ‘single-step model’ [9], which justify the occurrence of

the transition at jin = 0.5.

For the first onset we calculate the mean slope near jin ≃ 0.5 for α = 0.1 and N =

32, 64, 128, 256 and512 and from a finite-size-scaling analysis (Fig. 2) obtain the exponents

β = 0.5 and ν = 4.0, where J ≡ |jin − jc|/jc with jc = 0.5, and we use the scaling form

δσ = N−β/νF(JνN), with δσ ≡ σav −σc. The exponent ν, which we obtain in this way from

finite-size scaling, might not be the same as the actual correlation length exponent as has

been pointed out in the context of sliding CDW’s [4].

In the low-jin regime, as α increases from 0 to 0.05, σav decreases in steps of one. The

values of α at which these steps occur yield the first-order boundaries of Fig. 1. All these

first-order boundaries end at critical points in the range 1 <∼ jin
<∼ 1.2. The overall envelope

of the steps in σav can be fit approximately to a form σav ∼ 1/(2α). This behavior follows

from the update rule (Eq. 2): N (ασi) = 0 for ασi < 1

2
, so, if α < 1/(2σc) (=0.05 for

σc = 10), even a slope σi > σc may become stable; e.g., with σc = 10 and α = 0.04,

N (ασi) = 0 for σi = σc + 1 andσc + 2, so the slope at the effective angle of repose turns out

to be σeff = σc + 2 = 12. As α decreases, σeff also increases in discrete steps, leading to the

first-order lines at low α.

We fit the equal-time height correlation function Chh(r) to an exponential form [11]

which then yields a correlation length. Figure 3 shows this correlation length ξhh versus jin

for α = 0.1 at different values of N . Clearly ξhh diverges at jin ≃ 0.5 and also at subsequent

continuous transitions. We have not characterized the divergences by an exponent because

ξhh exceeds our system size somewhat before the transition (so we do not show data near

jin = 0.5.).

The output current autocorrelation function Cjj(τ) does not fit an exponential form
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very well. However, we have extracted correlation times τjj from the area under Cjj(τ)

(normalized so that Cjj(τ = 0) = 1). Figure 3 shows plots of τjj versus jin for α = 0.1,

which sharpen with increasing N . This sharpening shows up clearly near jin = 0.5 and leads

to an increasing trend in τjj near the next onset (jin ≃ 1.1).

It is generally believed that nonequilibrium phase transitions cannot occur in stochastic,

one-dimensional models with short-ranged interactions [12]. We believe the transitions in

our model occur because the noise amplitude per site vanishes as N → ∞. This is why our

one-dimensional model with short-range interactions exhibits phase transitions. We have

checked that these phase transitions get rounded if there is a finite noise amplitude per

site as N → ∞. We have also performed simulations on two-dimensional versions of our

model. Our preliminary results indicate that, with low noise and a variety of boundary

conditions, such two-dimensional models show the same transitions as the one-dimensional

model discussed here. In the steady state, the two-dimensional system behaves like uncou-

pled one-dimensional systems, so no transitions occur in the high-noise limit. The details of

this study will be published elsewhere [11].

We have shown that our driven sandpile model displays a variety of steady states and

many transitions between them. This richness, coupled with its simplicity, makes our model a

promising one for the study of nonequilibrium phenomena in driven systems. As noted above,

it displays transitions similar to those in other driven systems, e.g., our onset transitions

(Fig. 2) are like unpinning transitions in sliding CDW’s [4] or in pinned flux-lattice systems

[5]. It would be interesting to study whether this similarity is merely superficial. There

are some obvious ways in which the CDW models are different from ours: (1) They exhibit

pinning because of quenched randomness but have no external noise; and (2) no current

flows in their pinned states. The importance of these differences needs to be elucidated. In

this general context it is interesting to study the zero-current limit of our model. We find

that it does not show conventional SOC when the pile is allowed to relax, after each input

of sand, to a completely quiescent state in which no further transfers are possible (à la Bak,

Tang, and Wiesenfeld [3]). The precise forms of the distribution of avalanche sizes, etc., will
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be reported elsewhere [11].
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FIGURES

FIG. 1. The nonequilibrium phase diagram of our model in the α−jin plane. Full (dashed) lines

indicate continuous (first-order) transitions. At low α there is an infinity of first-order boundaries;

only the first five are shown. The corners in the phase boundaries and multicritical points are

schematic; our data are too noisy to resolve them.

FIG. 2. A plot (full line) of σav versus jin. Dashed lines are the asymptotes for large and small

jin. Arrows mark successive onsets (see text). The inset shows a finite-size scaling plot for δσNβ/ν

versus NJν at α = 0.1 and jin
>
∼ 0.5 for N = 64(+), 128(⋄), 256(∗) and 512(△) with β = 0.5 and

ν = 4.

FIG. 3. Equal-time height correlation length ξhh and output current autocorrelation time τjj

versus jin for N = 32(◦), 64(+), 128(⋄), 256(∗) and 512(△). For ξhh we do not plot points in regions

where ξhh > N .

FIG. 4. A plot of ji versus σi (Eq. (2)) for α = 0.1 and 0.125 and σc = 10.

11


