12 research outputs found

    Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish

    Get PDF
    Mitochondria are essential adenosine triphosphate (ATP)-generating cellular organelles. In the retina, they are highly numerous in the photoreceptors and retinal pigment epithelium (RPE) due to their high energetic requirements. Fission and fusion of the mitochondria within these cells allow them to adapt to changing demands over the lifespan of the organism. Using transmission electron microscopy, we examined the mitochondrial ultrastructure of zebrafish photoreceptors and RPE from 5 days post fertilisation (dpf) through to late adulthood (3 years). Notably, mitochondria in the youngest animals were large and irregular shaped with a loose cristae architecture, but by 8 dpf they had reduced in size and expanded in number with more defined cristae. Investigation of temporal gene expression of several mitochondrial-related markers indicated fission as the dominant mechanism contributing to the changes observed over time. This is likely to be due to continued mitochondrial stress resulting from the oxidative environment of the retina and prolonged light exposure. We have characterised retinal mitochondrial ageing in a key vertebrate model organism, that provides a basis for future studies of retinal diseases that are linked to mitochondrial dysfunction

    REP1 deficiency causes systemic dysfunction of lipid metabolism and oxidative stress in choroideremia

    Get PDF
    Choroideremia (CHM) is an X-linked recessive chorioretinal dystrophy caused by mutations in CHM, encoding for Rab escort protein 1 (REP1). Loss of functional REP1 leads to the accumulation of unprenylated Rab proteins and defective intracellular protein trafficking, the putative cause for photoreceptor, retinal pigment epithelium (RPE), and choroidal degeneration. CHM is ubiquitously expressed, but adequate prenylation is considered to be achieved, outside the retina, through the isoform REP2. Recently, the possibility of systemic features in CHM has been debated; therefore, in this study, whole metabolomic analysis of plasma samples from 25 CHM patients versus age- and sex-matched controls was performed. Results showed plasma alterations in oxidative stress-related metabolites, coupled with alterations in tryptophan metabolism, leading to significantly raised serotonin levels. Lipid metabolism was disrupted with decreased branched fatty acids and acylcarnitines, suggestive of dysfunctional lipid oxidation, as well as imbalances of several sphingolipids and glycerophospholipids. Targeted lipidomics of the chmru848 zebrafish provided further evidence for dysfunction, with the use of fenofibrate over simvastatin circumventing the prenylation pathway to improve the lipid profile and increase survival. This study provides strong evidence for systemic manifestations of CHM and proposes potentially novel pathomechanisms and targets for therapeutic consideration

    Analysis of hedgehog signaling in periocular sebaceous carcinoma

    Get PDF
    PURPOSE: Sebaceous carcinoma (SC) is a clinical masquerader of benign conditions resulting in significant eye morbidity, sometimes leading to extensive surgical treatment including exenteration, and even mortality. Little is known about the genetic or molecular basis of SC. This study identifies the involvement of Hedgehog (Hh) signaling in periocular SC. METHODS: Fifteen patients with periocular SC patients were compared to 15 patients with eyelid nodular basal cell carcinoma (nBCC; a known Hh tumor), alongside four normal individuals as a control for physiological Hh expression. Expression of Patched 1 (PTCH1), Smoothened (SMO), and glioma-associated zinc transcription factors (Gli1 and Gli2) were assessed in histological sections using immunohistochemistry and immunofluorescence (IF) techniques. Antibody specificity was verified using Western-blot analysis of a Gli1 over-expressed cancer cell line, LNCaP-Gli1. Semi-quantification compared tumors and control tissue using IF analysis by ImageJ software. RESULTS: Expression of the Hh pathway was observed in SC for all four major components of the pathway. PTCH1, SMO, and Gli2 were more significantly upregulated in SC (P < 0.01) compared to nBCC. Stromal expression of PTCH1 and Gli2 was observed in SC (P < 0.01). In contrast, stromal expression of these proteins in nBCC was similar or down-regulated compared to physiological Hh controls. CONCLUSIONS: The Hh signaling pathway is significantly more upregulated in periocular SC compared to nBCC, a known aberrant Hh pathway tumor. Furthermore, the stroma of the SC demonstrated Hh upregulation, in particular Gli2, compared to nBCC. Targeting of this pathway may be a potential treatment strategy for SC

    Mechanism and evidence of nonsense suppression therapy for genetic eye disorders

    Get PDF
    Between 5 and 70% of genetic disease is caused by in-frame nonsense mutations, which introduce a premature termination codon (PTC) within the disease-causing gene. Consequently, during translation, non-functional or gain-of-function truncated proteins of pathological significance, are formed. Approximately 50% of all inherited retinal disorders have been associated with PTCs, highlighting the importance of novel pharmacological or gene correction therapies in ocular disease. Pharmacological nonsense suppression of PTCs could delineate a therapeutic strategy that treats the mutation in a gene- and disease-independent manner. This approach aims to suppress the fidelity of the ribosome during protein synthesis so that a near-cognate aminoacyl-tRNA, which shares two of the three nucleotides of the PTC, can be inserted into the peptide chain, allowing translation to continue, and a full-length functional protein to be produced. Here we discuss the mechanisms and evidence of nonsense suppression agents, including the small molecule drug ataluren (or PTC124) and next generation 'designer' aminoglycosides, for the treatment of genetic eye disease

    Phagosomal and mitochondrial alterations in RPE may contribute to KCNJ13 retinopathy

    Get PDF
    Abstract Mutations in KCNJ13 are associated with two retinal disorders; Leber congenital amaurosis (LCA) and snowflake vitreoretinal degeneration (SVD). We examined the retina of kcnj13 mutant zebrafish (obelix td15 , c.502T > C p.[Phe168Leu]) to provide new insights into the pathophysiology underlying these conditions. Detailed phenotyping of obelix td15 fish revealed a late onset retinal degeneration at 12 months. Electron microscopy of the obelix td15 retinal pigment epithelium (RPE) uncovered reduced phagosome clearance and increased mitochondrial number and size prior any signs of retinal degeneration. Melanosome distribution was also affected in dark-adapted 12-month obelix td15 fish. At 6 and 12 months, ATP levels were found to be reduced along with increased expression of glial fibrillary acidic protein and heat shock protein 60. Quantitative RT-PCR of polg2, fis1, opa1, sod1/2 and bcl2a from isolated retina showed expression changes consistent with altered mitochondrial activity and retinal stress. We propose that the retinal disease in this model is primarily a failure of phagosome physiology with a secondary mitochondrial dysfunction. Our findings suggest that alterations in the RPE and photoreceptor cellular organelles may contribute to KCNJ13-related retinal degeneration and provide a therapeutic target

    Loss of REP1 impacts choroidal melanogenesis and vasculogenesis in choroideremia

    No full text
    Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, however, the involvement of the choroid in disease progression is not fully understood. CHM is caused by mutations in the CHM gene, encoding the ubiquitously expressed Rab escort protein 1 (REP1). REP1 plays an important role in intracellular trafficking of vesicles, including melanosomes. In this study, we examined the ultrastructure of the choroid in chmru848 fish and Chmnull/WT mouse models using transmission electron and confocal microscopy. Significant pigmentary disruptions were observed, with lack of melanosomes in the choroid of chmru848 fish from 4 days post fertilisation (4dpf), and a reduction in choroidal blood vessel diameter and interstitial pillars suggesting a defect in vasculogenesis. Total melanin and expression of melanogenesis genes tyr, tryp1a, mitf, dct and pmel were also reduced from 4dpf. In Chmnull/WT mice, choroidal melanosomes were significantly smaller at 1 month, with reduced eumelanin at 1 year. The choroid in CHM patients were also examined using spectral domain optical coherence tomography (SD-OCT) and OCT-angiography (OCT-A) and the area of preserved choriocapillaris (CC) was found to be smaller than that of overlying photoreceptors, suggesting that the choroid is degenerating at a faster rate. Histopathology of an enucleated eye from a 74-year-old CHM male patient revealed isolated areas of RPE but no associated underlying CC. Pigmentary disruptions in CHM animal models reveal an important role for REP1 in melanogenesis, and drugs that improve melanin production represent a potential novel therapeutic avenue

    Synchronized tissue-scale vasculogenesis and ubiquitous lateral sprouting underlie the unique architecture of the choriocapillaris

    No full text
    The choriocapillaris is an exceptionally high density, two-dimensional, sheet-like capillary network, characterized by the highest exchange rate of nutrients for waste products per area in the organism. These unique morphological and physiological features are critical for supporting the extreme metabolic requirements of the outer retina needed for vision. The developmental mechanisms and processes responsible for generating this unique vascular network remain, however, poorly understood. Here we take advantage of the zebrafish as a model organism for gaining novel insights into the cellular dynamics and molecular signaling mechanisms involved in the development of the choriocapillaris. We show for the first time that zebrafish have a choriocapillaris highly similar to that in mammals, and that it is initially formed by a novel process of synchronized vasculogenesis occurring simultaneously across the entire outer retina. This initial vascular network expands by un-inhibited sprouting angiogenesis whereby all endothelial cells adopt tip-cell characteristics, a process which is sustained throughout embryonic and early post-natal development, even after the choriocapillaris becomes perfused. Ubiquitous sprouting was maintained by continuous VEGF-VEGFR2 signaling in endothelial cells delaying maturation until immediately before stages where vision becomes important for survival, leading to the unparalleled high density and lobular structure of this vasculature. Sprouting was throughout development limited to two dimensions by Bruchs membrane and the sclera at the anterior and posterior surfaces respectively. These novel cellular and molecular mechanisms underlying choriocapillaris development were recapitulated in mice. In conclusion, our findings reveal novel mechanisms underlying the development of the choriocapillaris during zebrafish and mouse development. These results may explain the uniquely high density and sheet-like organization of this vasculature.Funding Agencies|Svenska Sallskapet for Medicinsk Forskning; Linkoping Universitet; Eva och Oscar Ahrens Stiftelse; Ollie och Elof Ericssons Stiftelse; Stiftelsen Sigurd och Elsa Goljes Minne; Magnus Bergvalls Stiftelse; Ogonfonden; Jeanssons Stiftelser; National Natural Science Foundation of ChinaNational Natural Science Foundation of China [81773059]; Shanghai Pujiang ProgramShanghai Pujiang Program [18PJ1400600]; VetenskapsradetSwedish Research Council</p

    Loss of Rab27 function results in abnormal lung epithelium structure in mice

    No full text
    Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium
    corecore