207 research outputs found
Growth and characterization of benzil single crystals using nanotranslation by the modified vertical Bridgman technique
Benzil single crystals have been grown by the modified vertical Bridgman technique using the double
wall ampoule with nanotranslation for the first time. The characterization studies of benzil crystals
grown by both single and double wall ampoules were analyzed. The grown benzil crystal was confirmed
by single crystal and powder X-ray diffraction analyses. Fourier transform infrared analysis confirms
the functional groups of the grown benzil. High resolution X-ray diffraction analysis indicates the
crystalline perfection of the grown crystals. The UV-Vis-NIR studies show that the grown benzil
crystals cutoff wavelength is around 434 nm. The green emission of the grown benzil was identified by
photoluminescence studies. The thermal property of the grown benzil was studied by thermogravimetric and differential thermal analyses. The dielectric measurements of benzil crystals were carried out with different frequencies and temperatures and the results indicate an increase in
dielectric and conductivity parameters with the increase of temperature at all frequencies. The second
harmonic conversion efficiency of the grown benzil was determined
Ternary Cu2SnS3: synthesis, structure, photoelectrochemical activity, and heterojunction band offset and alignment
Ternary Cu2SnS3 (CTS) is an attractive nontoxic and earth-abundant absorber material with suitable optoelectronic properties for cost-effective photoelectrochemical applications. Herein, we report the synthesis of high-quality CTS nanoparticles (NPs) using a low-cost facile hot injection route, which is a very simple and nontoxic synthesis method. The structural, morphological, optoelectronic, and photoelectrochemical (PEC) properties and heterojunction band alignment of the as-synthesized CTS NPs have been systematically characterized using various state-of-the-art experimental techniques and atomistic first-principles density functional theory (DFT) calculations. The phase-pure CTS NPs confirmed by X-ray diffraction (XRD) and Raman spectroscopy analyses have an optical band gap of 1.1 eV and exhibit a random distribution of uniform spherical particles with size of approximately 15–25 nm as determined from high-resolution transmission electron microscopy (HR-TEM) images. The CTS photocathode exhibits excellent photoelectrochemical properties with PCE of 0.55% (fill factor (FF) = 0.26 and open circuit voltage (Voc) = 0.54 V) and photocurrent density of −3.95 mA/cm2 under AM 1.5 illumination (100 mW/cm2). Additionally, the PEC activities of CdS and ZnS NPs are investigated as possible photoanodes to create a heterojunction with CTS to enhance the PEC activity. CdS is demonstrated to exhibit a higher current density than ZnS, indicating that it is a better photoanode material to form a heterojunction with CTS. Consistently, we predict a staggered type-II band alignment at the CTS/CdS interface with a small conduction band offset (CBO) of 0.08 eV compared to a straddling type-I band alignment at the CTS/ZnS interface with a CBO of 0.29 eV. The observed small CBO at the type-II band aligned CTS/CdS interface points to efficient charge carrier separation and transport across the interface, which are necessary to achieve enhanced PEC activity. The facile CTS synthesis, PEC measurements, and heterojunction band alignment results provide a promising approach for fabricating next-generation Cu-based light-absorbing materials for efficient photoelectrochemical applications
Mu2e Technical Design Report
The Mu2e experiment at Fermilab will search for charged lepton flavor
violation via the coherent conversion process mu- N --> e- N with a sensitivity
approximately four orders of magnitude better than the current world's best
limits for this process. The experiment's sensitivity offers discovery
potential over a wide array of new physics models and probes mass scales well
beyond the reach of the LHC. We describe herein the preliminary design of the
proposed Mu2e experiment. This document was created in partial fulfillment of
the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution
available at http://mu2e.fnal.gov; corrected typo in background summary,
Table 3.
Trust, control and knowledge transfer in small business networks
The ability to transfer knowledge effectively in the networks of small and medium-sized firms (SMEs) is paramount for supporting firm competitiveness. Our research is the first one that explores the joint effect of trust and control mechanisms on knowledge transfer in the case of networks of SMEs. We use a multiple case study approach based on six Italian networks of SMEs. We analyse the joint impact of different ethical based trustworthiness factors—namely benevolence and integrity—and the levers of control (LOCs)—namely, belief, boundary, diagnostic and interactive LOCs—on knowledge transfer between SMEs in networks. We find that trust substitutes for the implementation of boundary, diagnostic, and belief tools, while it works jointly with interactive tools in order to support knowledge transfer. These insights not only provide a rich foundation for follow-up research, but also inform SME managers about how to increase the effectiveness and efficiency of knowledge transfer with their network partners
- …