19 research outputs found

    Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs

    No full text
    Climate change influences events such as droughts, floods, extreme temperatures and sea level changes and hence affects the global food production, energy generation, and water resources adversely. Rising greenhouse gas (GHG) concentrations in the atmosphere are considered the dominant cause of climate change. General Circulation Models (GCMs) are used for the projection of climate into future, accounting for the GHG concentrations. However, the coarse spatial resolution of GCM outputs does not permit their direct use in catchment scale studies. Therefore either dynamic or statistical downscaling techniques are used for linking GCM outputs to catchment scale hydroclimatic variables

    Statistical downscaling of general circulation model outputs to precipitation accounting for non-stationarities in predictor-predictand relationships

    Get PDF
    This paper presents a novel approach to incorporate the non-stationarities characterised in the GCM outputs, into the Predictor-Predictand Relationships (PPRs) in statistical downscaling models. In this approach, a series of 42 PPRs based on multi-linear regression (MLR) technique were determined for each calendar month using a 20-year moving window moved at a 1-year time step on the predictor data obtained from the NCEP/NCAR reanalysis data arcHIVe and observations of precipitation at 3 stations located in Victoria, Australia, for the period 1950-2010. Then the relationships between the constants and coefficients in the PPRs and the statistics of reanalysis data of predictors were determined for the period 1950-2010, for each calendar month. Thereafter, using these relationships with the statistics of the past data of HadCM3 GCM pertaining to the predictors, new PPRs were derived for the periods 1950-69, 1970-89 and 1990-99 for each station. This process yielded a non-stationary downscaling model consisting of a PPR per calendar month for each of the above three periods for each station. The non-stationarities in the climate are characterised by the long-term changes in the statistics of the climate variables and above process enabled relating the non-stationarities in the climate to the PPRs. These new PPRs were then used with the past data of HadCM3, to reproduce the observed precipitation. It was found that the non-stationary MLR based downscaling model was able to produce more accurate simulations of observed precipitation more often than conventional stationary downscaling models developed with MLR and Genetic Programming (GP)

    Statistical Downscaling of General Circulation Model Outputs to Precipitation - part 1: calibration and validation

    Get PDF
    This article is the first of two companion articles providing details of the development of two separate models for statistically downscaling monthly precipitation. The first model was developed with National Centers for Environmental Prediction/National Center for Atmospheric Research (/) reanalysis outputs and the second model was built using the outputs of Hadley Centre Coupled Model version 3 (). Both models were based on the multi‐linear regression () technique and were built for a precipitation station located in Victoria, Australia. Probable predictors were selected based on the past literature and hydrology. Potential predictors were selected for each calendar month separately from the / reanalysis data, considering the correlations that they maintained with observed precipitation. Based on the strength of the correlations, these potential predictors were introduced to the downscaling model until its performance in validation, in terms of Nash–Sutcliffe Efficiency (), was maximized. In this manner, for each calendar month, the final sets of potential predictors and the best downscaling models with / reanalysis data were identified. The 20th century climate experiment data corresponding to these final sets of potential predictors were used to calibrate and validate the second model. In calibration and validation, the model developed with / reanalysis data displayed of 0.74 and 0.70, respectively. The model built with outputs showed of 0.44 and 0.17 during the calibration and validation periods, respectively. Both models tended to under‐predict high precipitation values and over‐predict near‐zero precipitation values, during both calibration and validation. However, this prediction characteristic was more pronounced by the model developed with outputs. A graphical comparison of observed precipitation, the precipitation reproduced by the two downscaling models and the raw precipitation output of , showed that there is large bias in the precipitation output of . This indicated the need of a bias‐correction, which is detailed in the second companion article

    Statistical Downscaling of General Circulation Model Outputs to Precipitation - part 2: bias-correction and future projections

    Get PDF
    This article is the second of a series of two articles. In the first article, two models were developed with National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and HadCM3 outputs, for statistically downscaling these outputs to monthly precipitation at a site in north-western Victoria, Australia. In that study, it was seen that the downscaling model developed with NCEP/NCAR reanalysis outputs performs much better than the model developed with HadCM3 outputs. Furthermore, it was found that there is large bias in HadCM3 outputs which needs to be corrected. In this article, the downscaling model developed with NCEP/NCAR reanalysis outputs was used to downscale HadCM3 20th century climate experiment outputs to monthly precipitation over the period 1950-1999. In all four seasons, the precipitation downscaled with HadCM3 20th century outputs, displayed a large scatter and the majority of precipitation was overestimated. The precipitation downscaled with HadCM3 outputs was bias-corrected against the observed precipitation pertaining to the period 1950-1999, using three techniques: (1) equidistant quantile mapping (EDQM), (2) monthly bias-correction (MBC) and (3) nested bias-correction (NBC). Although all these bias-correction techniques were able to adequately correct the statistics of downscaled precipitation, the magnitude of the scatter of precipitation remained almost the same. Considering the performances and its ability to correct the cumulative distribution of precipitation, EDQM was selected for the bias-correction of future precipitation projections. HadCM3 outputs for the A2 and B1 greenhouse gas scenarios were introduced to the downscaling model and the downscaled precipitation for the period 2000-2099 was bias-corrected with the EDQM technique. Both A2 and B1 scenarios indicated a rise in the average of future precipitation in winter and a drop in it in summer and spring. These scenarios showed an increase in the maximum monthly precipitation in all seasons and an increase in percentage of months with zero precipitation in summer, autumn and spring. © 2014 Royal Meteorological Societ
    corecore