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ABSTRACT: This study employed least square support vector machine regression (LS-SVM-R) and multi-linear regression
(MLR) for statistically downscaling monthly general circulation model (GCM) outputs directly to monthly catchment
streamflows. The scope of the study was limited to calibration and validation of the downscaling models. The methodology
was demonstrated by its application to a streamflow site in the Grampian water supply system in northwestern Victoria,
Australia. Probable predictors for the study were selected from the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis data set based on the past literature and hydrology. Probable
variables that displayed the best significant correlations, consistently with the streamflows over the entire period of the study
(1950–2010) and under three 20-year time slices (1950–1969, 1970–1989 and 1990–2010) were selected as potential
predictors. To better capture seasonal variations of streamflows, downscaling models were developed for each calendar
month. The standardized potential predictors were introduced to the LS-SVM-R and MLR models, starting from the best
correlated three and then, others one by one, based on their correlations with the streamflows, until the model performance
in validation was maximized. This stepwise model development enabled the identification of the optimum number of
potential variables for each month. The model calibration was performed over the period 1950–1989 and validation was
done for 1990–2010. LS-SVM-R model parameter optimization was achieved using simplex algorithm and leave-one-out
cross-validation. The MLR models were optimized by minimizing the sum of squared errors. In both modelling techniques,
validation was performed as an independent simulation. In calibration, LS-SVM-R and MLR models displayed equally good
performances with a trend of under-predicting high flows. During validation, LS-SVM-R outperformed MLR, though both
techniques over-predicted most of the streamflows. It was concluded that LS-SVM-R is a better technique for statistically
downscaling GCM outputs to streamflows than MLR, but still MLR is a potential technique for the same task. Copyright
 2012 Royal Meteorological Society
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1. Introduction

Climate change due to increasing greenhouse gas (GHG)
concentrations in the atmosphere is a major concern in
today’s world (Hughes, 2003). Scientific details on cli-
mate change and its impacts began to reveal in 1980s
(Muzik, 2002). Today, it is clearly understood that cli-
mate change is affecting the physical and biological sys-
tems in the Earth, and it is expected to continue its
impacts in the future (Sullivan and Huntingford, 2009).
Human activities, including the combustion of fossil fuels
and changes in land cover such as deforestation and
agricultural practices, have led to increased atmospheric
GHG concentrations, which change the global energy
balance causing turmoil in climate (Xu et al., 2009).
Although the most clear climate change indicator is the
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rising surface air temperature, changes in precipitation
imposes more impacts on humans as well as flora and
fauna (Benestad et al., 2007). Climate change sheds its
impacts on plant physiology, productivity and growth,
since photosynthesis, which is responsible for the above-
mentioned processes of plants, is directly influenced by
the atmospheric carbon dioxide (leading GHG) concen-
tration and temperature (Hughes, 2000). Furthermore,
over the past few decades, changing climate has mod-
ified the distribution and existence of certain species of
animals around the world (Root et al., 2003). Climate
change alters the flows in streams, river water quality
and ecology of freshwater resources (Whitehead et al.,
2009).

Proper management of water resources requires the
accurate knowledge of runoff (or streamflow), and sea-
sonal and annual behaviours of the streamflow, under
changing climate (Phillips et al., 2003). According to
Ruiz et al. (2007), a reliable forecast of streamflow will
help the control of surface runoff and allocation of water
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for domestic and industrial needs, irrigation, and envi-
ronmental flows. The ever rising demand and possible
changes in the way water resources are distributed in
future will be a challenge for water resources man-
agers around the world (Chiew et al., 2010). During
1997–2008, the average rainfall over the southern part
of southeast Australia dropped by about 11% from the
long-term average causing a decline in runoff of about
35% (Chiew et al., 2010). Since 1997, till heavy rain-
falls in late 2010 and early 2011, the Australian state
of Victoria was in the grip of a severe drought. In the
decade of 1998–2007, the annual average rainfall over
Victoria decreased by about 13% from the long-term
average and the highest decline in Victorian rainfall,
which was about 28% occurred in the autumn (Victorian
Government Department of Sustainability and Environ-
ment, 2008). During this drought, the Melbourne and
the Grampians water supply systems in Victoria experi-
enced inflow drops of 38% and 75%, respectively, from
the long-term average. Considering the consequences of
such droughts, the prediction of future streamflows under
changing climate is a timely need.

General circulation models (GCMs) are regarded as
the most reliable and advanced tools available to simu-
late global climate hundreds of years into future (Anandhi
et al., 2008; Ghosh and Mujumdar, 2008). Heyen et al.
(1996) stated that GCMs are powerful tools for the anal-
ysis of the global climate. GCMs are widely used to
assess the impacts of rising GHG concentrations on the
global climate (von Storch et al., 1993). These GCMs
produce forecasts of the global climate based on possible
future GHG emission scenarios. In a GCM, conserva-
tion laws of mass, energy and momentum are applied
to the atmosphere along with various assumptions, to
simplify the naturally chaotic behaviour of the atmo-
sphere. The spatial resolution of a present day GCM
is in the order of a few hundred kilometres (Tripathi
et al., 2006). The spatial resolution varies from one GCM
to another (Smith and Chandler, 2009). According to
von Storch et al. (1993), GCMs are capable of simu-
lating the global climate realistically on a coarse scale.
However, there is a considerable difference between the
grid resolution of present day GCMs and the resolution
needed by catchment-level hydroclimatic studies (Mau-
rer and Hidalgo, 2008). Owing to the coarse resolution,
the direct use of GCM predictions at the catchment
scale is impossible (Wilby et al., 2004). However, as a
method of bridging the coarse-resolution GCM outputs
with catchment-scale hydroclimatic variables at finer res-
olutions, downscaling techniques have been developed
(Chen et al., 2010).

Downscaling techniques are broadly classified into
the two categories of dynamic downscaling and statis-
tical downscaling (Chu et al., 2010). Dynamic downscal-
ing involves nesting a finer resolution regional climatic
model (RCM) in a coarse-resolution GCM (Murphy,
1998). The boundary conditions needed for the RCM
to downscale the large-scale atmospheric conditions to
catchment scale, are provided by the GCM. According to

Anandhi et al. (2008), dynamic downscaling suffers the
drawbacks of high complexity and intense computational
costs. The propagation of systematic bias from GCM to
RCM is identified as another problem, associated with
dynamic downscaling (Giorgi et al., 2001). Unlike statis-
tical downscaling, dynamic downscaling yields spatially
distributed fields of climatic variables and it preserves
certain spatial correlations and maintains physically real-
istic relationships between climatic variables (Maurer and
Hidalgo, 2008). In statistical downscaling, statistical rela-
tionships are constructed between the coarse-resolution
GCM outputs (predictors of downscaling models) and
the catchment-scale hydroclimatic variables (predictands
of downscaling models) (Chen et al., 2010). Statistical
downscaling involves low computational costs and can
be implemented without detailed knowledge of the phys-
ical processes of the hydrologic cycle. In the process of
statistical downscaling, the details of the geography of
the study area are not needed, but in dynamic down-
scaling, a detailed knowledge of the geography is nec-
essary. Although statistical downscaling possesses the
above-mentioned advantages, a long time series of reli-
able observations is needed for model calibration and
validation (Heyen et al., 1996). A further consideration is
that although statistical downscaling methods are much
simpler than the dynamic downscaling methods, they
could underestimate the variance and fail to reproduce
the extreme events of hydroclimatic variables (Fowler
et al., 2007).

The major assumption in statistical downscaling is that
the predictor–predictand relationships derived during the
model development stage are valid for the future climatic
conditions (Wilby and Wigly, 2000). Benestad et al.
(2007) highlighted that, there exists a risk that a statistical
downscaling method that performs well under present cli-
mate could fail under changing climate in future, simply
due to the invalidity of the above-mentioned assumption.
Statistical downscaling techniques are classified under
three main categories of weather classification, regres-
sion models and weather generators (Wilby et al., 2004).
These three groups of methods are based on the con-
cept that the local climate is mainly a function of the
large-scale atmospheric conditions (Fowler et al., 2007).
In weather classification, predictor variables of GCMs
are grouped into a number of states and the predictands
are related to these states. Regression-based downscal-
ing methods construct linear or nonlinear mathematical
relationships between predictors and predictands (Chen
et al., 2010). Weather generators derive a synthetic series
of climate data, preserving statistics of the corresponding
observations (Wilks and Wilby, 1999).

Statistical downscaling of GCM predictors to
catchment-scale hydroclimatic variables has gained wide
application in the recent past. There are many examples
in the literature of the use of statistical downscaling in cli-
mate prediction studies. Support vector machine (SVM)
and artificial neural networks (ANNs) were used by Tri-
pathi et al. (2006) for forecasting monthly precipitation.
To predict daily precipitation, Chen et al. (2010) used
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SVM and multi-linear regression (MLR). Anandhi et al.
(2008, 2009) downscaled monthly precipitation and max-
imum/minimum temperatures with SVM. For downscal-
ing daily mean temperature, Huth (2002) utilized MLR.
Chu et al. (2010) downscaled daily mean temperature,
pan evaporation and precipitation with linear regression.
Salameh et al. (2009) applied generalized additive mod-
els (GAMs) to predict 6-h mean wind speeds. Timbal
et al. (2009) used method of analogues to predict daily
rainfall, minimum/maximum temperatures, pan evapora-
tion and dew point temperature. Relative humidity, water
vapour pressure, dew point temperatures and dew point
deficits were downscaled using MLR by Huth (2005).
Mean cloud cover, sunshine duration, relative humidity
and minimum/maximum/mean temperatures were down-
scaled at the daily timescale by Enke and Spegat (1997)
with the MLR technique. Cheng et al. (2008) applied
MLR to downscale daily mean surface wind speed,
mean sea-level pressure and minimum/maximum/mean
temperatures. GAMs, generalized linear models, aggre-
gated boosted trees and ANN were used for predicting
daily streamflows by Tisseuil et al. (2010). Ghosh and
Mujumdar (2008) implemented SVM and relevance vec-
tor machine to predict monthly streamflows. The ANN
technique was utilized by Cannon and Whitfield (2002)
for downscaling GCM outputs to 5-day mean stream-
flows. Seasonal streamflows were predicted by Landman
et al. (2001) using canonical correlation analysis and per-
fect prognosis method.

A limited number of past investigations have been per-
formed to directly downscale GCM predictors to stream-
flows. Direct downscaling of GCM predictors to stream-
flows using statistical downscaling methods allows for
the forecasting of flows over larger regions under chang-
ing climate (Tisseuil et al., 2010). In direct downscaling
of GCM predictors to streamflows, influences of land use,
soil cover and groundwater storage on streamflow are not
considered (Xu, 1999), and it permits to make a quick
estimate of streamflow. Furthermore, it skips the com-
plicated hydroclimatic processes associated with stream-
flow generation in the natural hydrologic cycle, which
ultimately leads to some errors. The direct downscaling
method is only applicable to an unregulated streamflow
site in a catchment, since the statistical functions derived
between GCM outputs and streamflows are independent
of any flow regulations imposed by humans.

The aim of the current study was to calibrate and
validate least square SVM regression (LS-SVM-R) and
MLR-based statistical downscaling models to downscale
monthly GCM outputs directly to monthly streamflows.
The two downscaling techniques were applied to a
streamflow station of the Grampians water supply system
in northwestern Victoria (Australia) as a case study. This
article discusses the calibration and validation of the LS-
SVM-R- and MLR-based streamflow prediction models
and provides a comparison of the two techniques. The
remainder of this article is organized as follows. The
study area and data are described first, followed by the
generic methodology. The application is then explained

leading to a discussion. Finally, the conclusions drawn
from the study are presented.

2. Study area and data

The Grampians water supply system located in north-
western Victoria in Australia was selected as the study
area for the current investigation. The Grampians sys-
tem, owned and operated by Grampians Wimmera Mallee
Water Corporation (GWMWater), is a large-scale multi-
reservoir water supply system that supplies water for
domestic, industrial, irrigation and environmental pur-
poses. The prediction of streamflows in the Grampians
system is a crucial task, since the system was severely
battered by the recent Victorian drought during the period
1997–2008, which decreased inflows to the reservoirs
of the system by about 75% from the long-term aver-
age. The prediction of future streamflow will allow the
assessment of availability of water resources in the sys-
tem and enhance the management of water within the
system. Figure 1 depicts the location of the GWMWa-
ter operational area. The Grampians reservoir system is
located in the south of the GWMWater operational area.

The present downscaling study was limited to a single
streamflow site in the study region. The streamflow site is
located on Fyans Creek at Lake Bellfield. The catchment
area for this site is about 96 km2 and situated wholly
within a national park (GWMWater, 2011). Because of
this location, land use has remained constant since Euro-
pean settlement in the 1800s. Geology of the catchment is
predominantly sandstone with some deposits of mudstone
(Cayley and Taylor, 1997). The quality of runoff is typi-
cally very good with low salinity, turbidity and moderate
colour. The slope of the catchment is reasonably steep.
Fyans Creek streamflows at Lake Bellfield are affected
by diversions into, and out of, the catchment.

Monthly reanalysis data of National Center for Envi-
ronmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) and unregulated streamflow
data at the site from 1950 to 2010 were used in the cali-
bration and validation process of the downscaling models.
These NCEP/NCAR reanalysis data (available from 1948
till today) are outputs of a GCM, corrected and quality
controlled at several stages (Kalnay et al., 1996). Many
authors have used the NCEP/NCAR reanalysis data set
for the calibration and validation of their downscaling
models in the past (Tripathi et al., 2006; Anandhi et al.,
2008, 2009; Ghosh and Mujumdar, 2008; Tisseuil et al.,
2010). The NCEP/NCAR reanalysis data are treated as an
output of an ideal GCM (Cannon and Whitfield, 2002).
The NCEP/NCAR reanalysis data were retrieved from
the website (http://www.esrl.noaa.gov/psd/) of National
Oceanic and Atmospheric Administration/Earth System
Research Laboratory Physical Sciences Division. The
quality-controlled unregulated monthly streamflow record
at the site considered (inflow to Lake Bellfield in the
Grampians system) in the present investigation was
obtained from GWMWater. The unregulated inflow data
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Figure 1. GWMWater operational area in northwestern Victoria, Australia.

to Lake Bellfield have been calculated using the water
balance technique considering the upstream diversions
(Sinclair, 2004).

3. Generic methodology

In statistical downscaling of GCM outputs to catchment-
scale hydroclimatic variables, mathematical relationships
are derived between the predictors and the predictand
concerned, assuming the validity of these relationships
under changing climate in future. In this study, predictor
variables were extracted from the NCEP/NCAR reanaly-
sis data archive, for downscaling them to monthly stream-
flows at the monitoring station. The downscaling models
in this study were developed employing the LS-SVM-R
and MLR techniques for each calendar month separately.

Initially, a substantially large atmospheric domain
above and around the streamflow site was defined, as
the climate and the hydrology at the site are influenced
largely by this atmospheric domain. A pool of proba-
ble predictors was identified based on the past literature
on statistical downscaling of GCM outputs to catchment
streamflows and fundamentals of hydrology. The proba-
ble predictor pool consists of the GCM outputs, which
have a high likelihood of influencing a certain predic-
tand. These probable predictors are essentially a subset
of all the predictors produced by a GCM (Anandhi et al.,
2008).

Potential predictors are a subset of probable predic-
tors that vary for each season and for each streamflow

station. This is because the predictor–predictand rela-
tionships vary seasonally due to seasonal changes in
atmospheric circulations (Karl et al., 1990) and also with
the geography. These potential predictors were the most
influential variables on streamflow generation during a
certain season or a calendar month. In the past downscal-
ing studies, models based on, the calendar months (Najafi
et al., 2011), the wet and dry seasons (Chen et al., 2010)
and the four traditional seasons summer, autumn, winter
and spring (Timbal et al., 2009) have been employed. In
the present statistical downscaling exercise, models were
developed for each calendar month to capture the sea-
sonal variability of the streamflow with a higher degree
of accuracy. Therefore, each calendar month had its own
pool of potential variables. To obtain the potential vari-
ables for each calendar month from the pool of probable
variables, the Pearson correlation coefficient (Pearson,
1895) was used. For identifying potential variables from
the probable variable pool, Tripathi et al. (2006) and
Anandhi et al. (2008) used correlation coefficient anal-
ysis successfully. The record of monthly streamflow data
and the probable predictors were split, chronologically
into 20-year time slices. For each 20-year time slice,
the Pearson correlation coefficients between each predic-
tor at each grid point of the atmospheric domain and
the streamflow were calculated, for each calendar month.
Similarly, the Pearson correlation coefficients, between
each predictor at each grid point of the atmospheric
domain and the streamflow for the entire period cover-
ing all the 20-year time slices were calculated. After this
process, the probable predictors that displayed the best
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Pearson correlation coefficients over the entire period of
data, while exhibiting good correlation coefficients con-
sistently over all 20-year time slices, were selected as the
potential predictors for each month. The consistency of
the correlation between a predictor and streamflow was
important since a good predictor of a predictand should
show a consistent relationship over time. By splitting the
data into 20-year time slices, any predictor that exhib-
ited inconsistencies in correlations with streamflows over
time could be identified, and subsequently eliminated.

The first two thirds of the predictor and streamflow data
time series were allocated for the model calibration, and
the remaining one third of the data was allocated for the
model validation. The above-selected potential predictors
for the model calibration period were standardized for
each calendar month by subtracting the means and
dividing by the standard deviations corresponding to
the same period. The standardization of the potential
predictors in the validation phase was performed with
the means and standard deviations corresponding to the
calibration period of the data set. The standardization of
NCEP/NCAR predictors scaled down the predictor data
to a single uniform scale and removed the units of the
variables. This process was widely practised in many of
the downscaling studies in the past (Tripathi et al., 2006;
Anandhi et al., 2008, 2009; Ghosh and Mujumdar, 2008;
Chen et al., 2010).

The LS-SVM-R- and MLR-based model calibration
and validation were conducted for each calendar month
by introducing the standardized potential predictors to
the models. The introduction of the standardized poten-
tial predictors to these models was done by initially
ingesting the first three best correlated predictors and
then the next best correlated predictors one by one,
until the model performance was maximized for valida-
tion. The model parameters were obtained by comparing
the model predictions with observations. The LS-SVM-
R-based models were calibrated with the leave-one-out
cross-validation and the model parameter optimization
was performed using the simplex algorithm proposed
by Nelder and Mead (1965). The MLR-based down-
scaling model parameter optimization was achieved by
minimizing the sum of the squares of the errors. The
stepwise development of the downscaling models enabled
the selection of the optimum number of potential vari-
ables for each calendar month. These optimum potential
predictors were a small subset of potential variables,
which maximized the model performance in the valida-
tion phase, for the calendar month. The model validation
was conducted as a simulation independent of calibration
by fixing the optimum model parameters obtained in the
calibration. The model performances in calibration and
validation during each calendar month and four seasons
were measured using the original Nash–Sutcliffe (N-S)
efficiency formula defined by Nash and Sutcliffe (1970).
Both original N-S efficiency and seasonally adjusted
Nash–Sutcliffe (SANS) efficiency proposed by Wang
(2006) were computed for the estimation of the model
performance over the entire calibration and validation

period, covering all four seasons and years. In the calcu-
lation of N-S efficiency, the original N-S formula uses the
overall average of the streamflows irrespective of seasons
or months considered, whereas the SANS efficiency for-
mula uses the individual seasonal averages of streamflows
in the same N-S formula. When there is a considerable
difference between the overall average of the streamflow
and the individual seasonal averages of the streamflows,
the original N-S formula tends to produce overall model
performance values higher than those of four seasons
(Wang, 2006). However, due to the inclusion of seasonal
averages of streamflows, SANS efficiency formula pro-
duces overall model performances, which are comparable
with those of seasons.

In general, predictor variables are highly correlated
over the spatial domain from which they are obtained
(Ghosh and Mujumdar, 2008). This could introduce
redundant information into the statistical downscaling
model, making it unstable and unnecessarily complicated.
Principal component (PC) analysis has been used in the
past downscaling studies to extract the variance present
in a large standardized predictor variable set to a lim-
ited number of PCs (Tripathi et al., 2006; Anandhi et al.,
2008, 2009; Ghosh and Mujumdar, 2008). To determine
how effective the use of PCs, in comparison with the
raw standardized predictor data, as the inputs to a statis-
tical downscaling model, an additional investigation was
performed. In this investigation, PCs were extracted only
for two calendar months from the standardized optimum
potential predictors. The first few PCs that explained
about 98% of the variance in the original optimum poten-
tial predictors were introduced to the LS-SVM-R model.
The PC-based LS-SVM-R models were calibrated and
validated, and their performances were compared with
those of the aforementioned corresponding non-PC mod-
els. It was assumed that PC-based models developed with
the LS-SVM-R technique will perform similar to those
with MLR. Owing to this, PC-based models were not
developed with the MLR technique in this study.

3.1. Overview of LS-SVM-R

The SVM is a machine learning algorithm with poten-
tial for classification and function approximation using
regression (Basak et al., 2007). SVM was initially devel-
oped for classification, but the theory was extended for
function estimation in 1996 (Drucker et al., 1996). Vap-
nik (2000) provides a detailed description on the SVM
theory, accounting for both classification and regres-
sion. LS-SVM is a simplified version of the original
SVM algorithm for classification and function estima-
tion, which maintains the advantages and the attributes of
the original SVM theory (Suykens et al., 2002). Accord-
ing to Suykens and Vandewalle (1999), LS-SVM pos-
sesses excellent generalization performances and is asso-
ciated with low computational costs. LS-SVM requires
less effort in model training in comparison to the orig-
inal SVM, owing to its simplified algorithm (Zhou
et al., 2011). Due to these advantages, LS-SVM-R was
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employed in this study. Tripathi et al. (2006), Anandhi
et al. (2009) and Zhou et al. (2011) applied LS-SVM-R
successfully for downscaling GCM outputs to catchment-
scale climatic variables.

The theory of LS-SVM is discussed in detail by
Suykens et al. (2002). The following is a brief account
on the theory of LS-SVM-R. Consider the sample (X, Y ),
where X is the independent variable, Xi ∈ Rn and X =
[X1, X2, X3 . . . Xi . . . Xn]. Y is the dependent variable
where Yi ∈ R.

Consider a model of the following form in Equa-
tion (1), where w are the model coefficients and ϕ(.)

is the function used for mapping the data of X into a
high-dimensional feature space:

Y (X) = wT ϕ(X) + b (1)

The LS-SVM-R optimization problem could be written
as follows:

min �(w, e) = 1

2
wT w + 1

2
γ

n∑
i=1

e2
i (2)

where � is the cost function to be minimized.

subject to the constraint Yi = wT ϕ(Xi) + b + ei (3)

where e is the error and γ the regularization parameter.
The Lagrangian solution to the above-mentioned opti-

mization is given by the following equation:

L(w, e, b, α) = 1

2
wT w + 1

2
γ

n∑
i=1

e2
i

−
n∑

i=1

αi{wT ϕ(Xi) + b + ei − Yi} (4)

L is the Lagrangian function in which αi are the
Lagrangian multipliers. Conditions for the optimality of
Equation (4) are given by the following equations:

∂L

∂w
= 0, → w =

n∑
i=1

αiϕ(Xi) (5)

∂L

∂b
= 0, →

n∑
i=1

αi = 0 (6)

∂L

∂ei

= 0, → αi = γ ei For all i (7)

∂L

∂αi

= 0, → wT ϕ(Xi) + b + ei − Yi = 0 For all i

(8)

After eliminating w and e from the above conditions
(from Equations (5), (6), (7), and (8)), the following
equation is obtained:

[
0 1T

v

1v � + Iγ −1

] [
b

α

]
=

[
0
Y

]
(9)

where

Y =




Y1

Y2
...

Yn


 , 1v =




1
1
...

1


 , α =




α1

α2
...

αn


 ,

I =




1 0 · · · 0
0 1 · · · 0
...

... · · · 0
0 0 · · · 1


 ,�ij = ϕ(Xi)

T ϕ(Xj )

and �ij = K(Xi,Xj ) is the kernel function (10)

The LS-SVM-R model becomes Y (X) =
n∑

i=1
αiK(Xi ,

Xj) + b in which α and b can be found by solving
Equation (9).

When the radial basis function (RBF) is used as
the kernel, where K(Xi, Xj ) = exp(−‖Xi − Xj‖2/2σ 2),
the LS-SVM-R tuning parameters become γ and σ

(width of the RBF kernel). In this study, the above-
described LS-SVM-R technique was used for downscal-
ing NCEP/NCAR predictors to streamflows. For LS-
SVM regression, LS-SVMlab 1.7 toolbox (De Brabanter
et al., 2010) was downloaded free from http://www.esat.
kuleuven.be/sista/lssvmlab/ and implemented in MAT-
LAB (R2008b) environment.

3.2. Overview of MLR

MLR is an extension of simple linear regression, where
multiple independent variables are used in explaining
the behaviour of the dependent variable. MLR is used
to build mathematical functions between two or more
independent variables and a dependent variable, by fitting
linear equations to a set of observed data. The best fit line
is determined by minimizing the sum of the squares of
the vertical deviations (residuals) between the line and
the observed data. A good MLR model should be able to
explain most of the variance of the dependent variable
with the minimum number of independent variables
(Helsel and Hirsch, 2002). The MLR technique is given
by the following equation:

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·
+ βiXi + · · · + βnXn + ε (11)

where Y is the dependent variable (predictand in a
downscaling exercise), β0 the intercept, βi the coefficient
of the ith independent variable Xi (ith predictor in
a downscaling exercise) and ε the noise in data. A
detailed description on the theory of MLR is provided
by Helsel and Hirsch (2002). This study employed the
MLR technique for downscaling NCEP/NCAR predictors
to streamflows, in parallel with LS-SVM-R. The MLR
option in the statistics toolbox in MATLAB (R2008b)
was used to build the MLR-based downscaling models.
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4. Application

The generic methodology described in Section 3 was
applied to the streamflow site in the Grampians water
supply system as a demonstration.

4.1. Atmospheric domain for downscaling
In the past, many authors in their downscaling studies
defined large atmospheric domains over and around the
points concerned on the ground. An atmospheric domain
of 5 × 5 grid points was defined by Ghosh and Mujum-
dar (2008) in downscaling GCM outputs to streamflows,
while Tripathi et al. (2006) and Anandhi et al. (2008)
used 6 × 6 and 3 × 3 grid arrangements, respectively, for
downscaling GCM predictors to precipitation. Although
there is no guideline on the selection of the optimum
atmospheric domain size, a substantially larger domain
will enable to determine greater number of better correla-
tions between the predictors and the predictand. The main
drawback of a large atmospheric domain is the increased
computational cost. This study employed a large atmo-
spheric domain of 7 × 6 grid points, each 2.5° apart, over
the streamflow station as shown in Figure 2. The grid
points were maintained 2.5° apart to make this grid com-
pliant with the resolution of the NCEP/NCAR reanalysis
data.

4.2. Probable and potential predictors for downscaling
The performances of a statistical downscaling model are
dependent on the choice of predictors and the selection of

the atmospheric domain (Wilby and Wigly, 1997). In any
downscaling study, the selection of predictors should be
given high priority (Fowler et al., 2007). A clear under-
standing of the physics of predictors and their connections
to the predictand aids the proper selection of a predictor
variable set, relevant to a certain downscaling exercise.
For the present downscaling exercise, 23 probable pre-
dictors were selected from the NCEP/NCAR reanalysis
data set based on the literature on similar studies and
hydrology. These probable predictors were common for
all calendar months. Each of these predictors had a spa-
tial dimension of 7 × 6 over the atmospheric domain, as
shown in Figure 2. The 23 probable predictors and the
basis of their selection are given in Table I.

The next step was to extract potential predictors from
the probable predictor pool for each calendar month. The
record of streamflows and NCEP/NCAR probable predic-
tors from 1950 to 2010 were separated into three 20-year
time slices 1950–1969, 1970–1989 and 1990–2010. It
is noteworthy to mention that the last time slice spanning
1990–2010 was 21 years in length. For each of these
time slices and for the entire study period (1950–2010),
the Pearson correlation coefficients between each proba-
ble predictor at each grid point in the atmospheric domain
and streamflow were calculated. The probable variables
that showed the best, statistically significant (95 % confi-
dence level, p = 0.05) correlations with the streamflow,
consistently over the above-mentioned three 20-year time

Figure 2. Atmospheric domain defined over the streamflow station.
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Table I. Probable predictors used in the study.

Name of predictor Basis of selection

200 hPa geopotential height Landman et al. (2001)
500 hPa geopotential height Landman et al. (2001), Cannon and Whitfield (2002), Ghosh

and Mujumdar (2008), Tisseuil et al. (2010)
700 hPa geopotential height Landman et al. (2001)
850 hPa geopotential height Landman et al. (2001), Tisseuil et al. (2010)
1000 hPa geopotential height Tisseuil et al. (2010)
500 hPa relative humidity Tisseuil et al. (2010)
700 hPa relative humidity Landman et al. (2001)
850 hPa relative humidity Tisseuil et al. (2010)
1000 hPa relative humidity Tisseuil et al. (2010)
2 m specific humidity Ghosh and Mujumdar (2008)
500 hPa specific humidity Tisseuil et al. (2010)
850 hPa specific humidity Cannon and Whitfield (2002), Tisseuil et al. (2010)
1000 hPa specific humidity Tisseuil et al. (2010)
2 m air temperature Ghosh and Mujumdar (2008)
Surface air temperature Ghosh and Mujumdar (2008)
Surface skin temperature Tisseuil et al. (2010)
500 hPa air temperature Tisseuil et al. (2010)
850 hPa air temperature Tisseuil et al. (2010)
1000 hPa air temperature Tisseuil et al. (2010)
Surface pressure Tisseuil et al. (2010)
Mean sea-level pressure Cannon and Whitfield (2002), Ghosh and Mujumdar (2008),

Tisseuil et al. (2010)
Volumetric soil moisture content 0–10 cm Hydrology
Volumetric soil moisture content 10–200 cm Hydrology

hPa = atmospheric pressure in hectopascal.

slices and the whole period, were selected as potential
variables, for each calendar month.

As an example of selecting the final set of potential
predictors for a calendar month from the pool of proba-
ble variables, Table II shows the potential predictors with
their grid locations (according to Figure 2) used as the
final inputs to the LS-SVM-based downscaling model in
January.

The predictors that displayed correlations (with stream-
flow), either consistently positive or negative and having
reasonably similar magnitudes, over the three time slices
and the whole study period were ranked in the descend-
ing order, according to the magnitude of the correlation
corresponding to the whole study period. In other words,
the predictors that displayed correlations with fluctuat-
ing signs (positive to negative or vice versa) and largely
varying magnitudes over time were excluded from the
potential variable set of a certain calendar month. These
predictors were introduced to the downscaling model, ini-
tially, the first three predictors with the best correlations
and the next best predictors one at a time, to the previ-
ous set of potential predictors. In January, the best three
potential variables, the 1000 hPa relative humidity at 1,2;
2,2 and 2,3 grid locations with correlation coefficients of
0.61, 0.57 and 0.54, respectively, were initially input to
the downscaling model. Thereafter the potential variables
with rank 4, 5, 6 etc. were introduced to the model one
at a time. This stepwise introduction of predictors was
performed until the model performances in the validation

were maximized. With the addition of the eighth variable
(volumetric soil moisture content 10–200 cm at 4,4), the
January LS-SVM model displayed the best performance
in validation in terms of the N-S efficiency. The addition
of the ninth and other ranked variables (these variables
have not been shown in Table II) did not improve the
model performances in validation. Therefore, the final set
of potential variables for the January LS-SVM model was
limited to eight variables. This procedure was practised
for all calendar months, with both LS-SVM and MLR
models, in extracting the potential variables. Table III
shows the potential variables used for the LS-SVM and
MLR models for each calendar month.

The final sets of potential predictors shown in Table III
for each calendar month, used in LS-SVM and MLR
models, consisted of 850 hPa air temperature, 850 hPa
specific humidity, volumetric soil moisture contents in 0
to 10 cm and 10 to 200 cm soil layers; 700 hPa, 850 hPa
and 1000 hPa relative humidities and 500 hPa, 700 hPa
and 850 hPa geopotential heights. Streamflow generation
is a result of a series of complex hydroclimatic pro-
cesses such as precipitation, evaporation and infiltration.
However, precipitation is regarded as the most promi-
nent force of generation of streamflows. In a statistical
downscaling study performed by Timbal et al. (2009), it
has been found that 850 hPa air temperature and 850 hPa
specific humidity are potential predictors of precipitation
over southwest of eastern Australia, which covers the cur-
rent study area. Hence, it was understood that 850 hPa
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Table II. Potential predictors used for the January LS-SVM model and their correlations with streamflows in each time slice and
whole period.

Rank of the variable Potential variables for January Grid location Time slice Correlation with streamflow

1 1000 hPa relative humidity 2,3 1950–1969 0.45
1970–1989 0.68
1990–2010 0.56
1950–2010 0.61

2 1000 hPa relative humidity 2,2 1950–1969 0.23
1970–1989 0.61
1990–2010 0.56
1950–2010 0.57

3 1000 hPa relative humidity 1,2 1950–1969 0.22
1970–1989 0.66
1990–2010 0.45
1950–2010 0.54

4 1000 hPa relative humidity 4,3 1950–1969 0.41
1970–1989 0.47
1990–2010 0.59
1950–2010 0.51

5 1000 hPa relative humidity 3,3 1950–1969 0.30
1970–1989 0.45
1990–2010 0.57
1950–2010 0.50

6 Volumetric soil moisture content 10–200 cm 2,2 1950–1969 0.38
1970–1989 0.47
1990–2010 0.56
1950–2010 0.47

7 Volumetric soil moisture content 0–10 cm 2,2 1950–1969 0.32
1970–1989 0.49
1990–2010 0.57
1950–2010 0.43

8 Volumetric soil moisture content 10–200 cm 4,4 1950–1969 0.23
1970–1989 0.51
1990–2010 0.51
1950–2010 0.42

air temperature and 850 hPa specific humidity are poten-
tial predictors of the streamflows, over this study area.
The soil moisture content (in this study the moisture in
the 0 to 10 cm and 10 to 200 cm soil layers) is a govern-
ing factor, which decides how much of the precipitation
is converted to runoff. Therefore, the soil moisture con-
tent was treated as an important potential predictor of
streamflow. Relative humidities at various pressure lev-
els are indicators of the atmospheric water vapour content
leading to the formation of clouds, which will finally con-
tribute to precipitation. Therefore, the relative humidities
at various pressure levels, which displayed good corre-
lations with the streamflow were remained in the pools
of potential predictors. Geopotential heights depict the
heights of the pressure surfaces of equal pressure above
the mean sea level. These geopotential heights are indi-
cators of atmospheric troughs and ridges (Cosma et al.,
2002), which are related with relatively low and relatively
high atmospheric pressure fields causing rainfall and rel-
atively dry weather conditions, respectively. Therefore,
various geopotential heights that showed a good rela-
tionship with streamflows were included in the sets of
potential predictors.

4.3. Inputs for model calibration and validation

The inputs to the LS-SVM-R- and MLR-based mod-
els for the calibration and validation were the same, as
these two modelling approaches were applied in paral-
lel. The time series of streamflow and predictor data,
which covered the 40-year period spanning 1950–1989,
was selected for the model calibration. The rest of the
21-year long data record from 1990 to 2010 was used for
the model validation. The potential predictors identified
in Section 4.2 were used to generate inputs for the down-
scaling model. The potential predictors for the model
calibration were standardized with the means and the
standard deviations corresponding to period 1950–1989.
The inputs for model validation were produced by stan-
dardizing the potential predictors from 1990 to 2010,
with the means and the standard deviations pertaining
to period 1950–1989. This procedure was practised in
the standardization of predictors for the model validation,
since the means and standard deviations of the predictors
corresponding the calibration period are a stationary com-
ponent of the statistical downscaling models, employed
in this study. The same means and standard deviations
will be used in the projection of future streamflows. The
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Table III. Potential predictors used in the LS-SVM and MLR models for each calendar month.

Month Potential variables used for LS-SVM
model with grid locations

Potential variables used for MLR
model with grid locations

January 1000 hPa relative humidity
{(1,2),(2,2),(2,3),(3,3),(3,4)}

1000 hPa relative humidity {(1,2),(2,2),(2,3),(3,4)}

Volumetric soil moisture content 0–10 cm {(2,2)}
Volumetric soil moisture content 10–200 cm
{(2,2),(4,4)}

February Volumetric soil moisture content 0–10 cm {(4,3)} Volumetric soil moisture content 0–10 cm {(4,3)}
Volumetric soil moisture content 10–200 cm
{(2,2),(3,1),(3,2)}

Volumetric soil moisture content 10–200 cm
{(2,2),(3,1),(3,2)}

March 1000 hPa relative humidity {(5,6),(5,7),(6,6),(6,7)} 1000 hPa relative humidity {(5,6),(6,6),(6,7)}
April 700 hPa relative humidity {(4,2),(4,3)} 700 hPa relative humidity {(4,2),(4,3)}

850 hPa relative humidity {(4,2),(5,2)} 850 hPa relative humidity {(4,2)}
May Volumetric soil moisture content 0–10 cm

{(4,2),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)}
Volumetric soil moisture content 0–10 cm
{(4,3),(4,4),(4,5)}

850 hPa air temperature {(3,1)}
June Volumetric soil moisture content 0–10 cm

{(4,3),(4,4), (5,3),(5,4)}
Volumetric soil moisture content 0–10 cm
{(4,3),(4,4),(5,2),(5,3),(5,4),(6,3)}

500 hPa geopotential height {(4,2)} 500 hPa geopotential height {(4,2)}
July 700 hPa geopotential height {(4,4)} 700 hPa geopotential height {(4,4)}

850 hPa geopotential height {(4,4),(4,5)} 850 hPa geopotential height {(4,3),(4,4),(4,5)}
August 700 hPa geopotential height

{(5,3),(5,4),(5,5),(5,6)}
700 hPa geopotential height {(5,4),(5,5)}

850 hPa geopotential height
{(4,5),(5,4),(5,5),(5,6)}

850 hPa geopotential height {(5,4),(5,5),(5,6)}

September 700 hPa geopotential height
{(2,1),(2,2),(3,2),(3,3)}

700 hPa geopotential height {(2,1),(3,2),(3,3)}

October Volumetric soil moisture content 0–10 cm
{(4,2),(4,3),(4,4), (5,2),(5,3),(5,4),(6,3)}

Volumetric soil moisture content 0–10 cm
{(4,3),(4,4),(5,3)}

November 700 hPa geopotential height
{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)}

700 hPa geopotential height
{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)}

500 hPa geopotential height {(2,3)}
December 700 hPa relative humidity {(4,3)} 700 hPa relative humidity {(4,3)}

850 hPa relative humidity {(3,1)} 850 hPa relative humidity {(3,1)}
1000 hPa relative humidity {(6,6)} 1000 hPa relative humidity {(6,6)}
850 hPa specific humidity {(5,5)} 850 hPa specific humidity {(5,5)}
Volumetric soil moisture content 0–10 cm
{(4,4),(4,5),(5,4)}

Volumetric soil moisture content 0–10 cm
{(4,4),(4,5),(5,4)}

Volumetric soil moisture content 10–200 cm
{(3,2),(4,3),(4,4)}

Volumetric soil moisture content 10–200 cm
{(3,2),(4,3),(4,4)}

observed streamflow data used in the model calibration
and validation were not standardized as streamflow was
the only predictand of the models.

4.4. LS-SVM-R downscaling model calibration and
validation

The LS-SVM-R models employed in this downscaling
study had two tuning parameters γ and σ , where γ is the
regularization parameter and σ is the width of the RBF
kernel. The kernel function in LS-SVM-R is utilized in
mapping the nonlinear predictor–predictand relationship
to a linear relationship in a higher dimensional space.
In the past downscaling studies performed by Tripathi
et al. (2006), Anandhi et al. (2008) and Ghosh and
Mujumdar (2008), it was found that the RBF kernel

performs superior to the other kernels such as linear and
polynomial, and therefore, this study employed the RBF
kernel.

The standardized potential variables for each calen-
dar month were introduced to the LS-SVM-R models,
initially the three potential predictors that showed the
best correlation coefficients and thereafter the next best
predictors, one at a time. With each addition of a new
predictor, the model performances in calibration and val-
idation were monitored with the original N-S efficiency
formula. The model that displayed the best N-S efficiency
in validation was selected as the best model for the cal-
endar month. The SANS efficiency was used to estimate
the overall model performance during calibration and val-
idation, along with the original N-S efficiency. All the
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model performances were monitored using the raw values
of observed and predicted streamflows. Scatter and time
series plots were graphed to produce visual comparisons
of model predicted streamflows with observed flow. The
model validation was conducted as a simulation in which
the optimum values of γ and σ yielded in the calibration
remained fixed. The same process was followed for all
calendar months.

January and December had eight and ten optimum
number of potential predictors to LS-SVM-R models,
respectively. The PC analysis was used to derive PCs
related to these predictors of the two months. The first
five and seven PCs that covered about 98% of the vari-
ance of the original potential variables, were introduced
initially to the LS-SVM-R January and December down-
scaling models. Thereafter, the number of input PCs to
the model was increased one at a time until all PCs
were introduced. The coefficients of these PCs extracted
for the model calibration were used in the generation of
PCs for the validation phase, as these coefficients of PCs
become a part of the model in future predictions. The
same parameter optimization and calibration and valida-
tion procedures described above for non-PC LS-SVM-R
models were applied to PC-based models.

4.5. MLR downscaling model calibration and
validation

The same model calibration and validation procedure
described under Section 4.4 was employed in the MLR-
based model development. The MLR model optimization
was performed by minimizing the sum of the squares
of the errors, between the model predictions and obser-
vations. The optimum number of model inputs to the
MLR downscaling models was different from that of LS-
SVM-R models, for a calendar month. This was since,
for the same calendar month, the two types of models
needed different numbers of predictors (different predic-
tor combinations) to exhibit the maximum performance
in validation.

4.6. Results of LS-SVM-R-based downscaling model
calibration and validation

Figure 3 displays the comparison of observed monthly
flow and the monthly flow predicted by the LS-SVM-R

downscaling model for the calibration (1950–1989) and
validation (1990–2010) periods.

To produce this plot of streamflow time series, the
outputs of each individual calendar month-based model
were combined sequentially from 1950 to 2010. During
the calibration phase from 1950 to 1989, the LS-SVM-R
downscaling model showed an N-S efficiency of 0.73,
and in the validation phase from 1990 to 2010, an N-
S efficiency of 0.47 was observed. The overall SANS
efficiencies for the calibration and validation of the LS-
SVM-R model were 0.59 and 0.27, respectively. In the
model calibration, the observed average streamflow of
2129.3 ML month−1 was well reproduced by the model
as 2130 ML month−1, but during the validation, the
observed average streamflow of 1318.5 ML month−1 was
over-estimated by the model as 1910 ML month−1. The
year 1997 was the start of a long drought in Victoria,
which lasted until mid-2010. In the time series plot in
Figure 3, a distinct over-prediction of high streamflows
by the LS-SVM-R model was observed after 1997, where
a drop in the average of the observed streamflow was
evident. The observed average of the streamflows at the
monitoring site showed a 56% reduction in the post-
1997 era with respect to the flow average for the period
1950–1996.

The scatter plots corresponding to the calibration and
validation phases of the LS-SVM-R-based downscaling
models are shown in Figure 4. According to the scatter
plots, during calibration, the LS-SVM-R model under-
predicted the majority of high flows, meanwhile in vali-
dation, it tended to over-predict most of the streamflows.
In both calibration and validation, the LS-SVM-R model
failed to predict most of the zero and low flows cor-
rectly, and in certain instances, it heavily over-predicted
the zero flows, mainly during the validation period. In
the observed flow record, 1.5% of the streamflow data
were zero flows during the calibration period, and the
zero flow percentage was about 7.3% in the validation
period.

Figure 5 depicts the scatter plots for each season
under the calibration and validation phases of the LS-
SVM-R-based models. The summer, autumn, winter and
spring were defined as periods December–February,

Figure 3. Observed streamflow and SVM-predicted streamflow.
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Figure 4. Scatter plots for calibration and validation phases of SVM-based model.

March–May, June–August and September–November,
respectively. Good calibration results were observed in
winter and summer with N-S efficiencies of 0.56 and
0.55, and the same two seasons exhibited the best N-S
efficiencies of 0.38 and 0.39, respectively, of all seasons
in LS-SVM-R model validation. In autumn, the model
validation failed drastically with a poor N-S efficiency
of −2.45, though the autumn calibration was performed
with a reasonably good N-S efficiency of 0.45. Extremely
high over-estimation of zero and low flows was observed
in the autumn validation. The spring calibration yielded
the best N-S efficiency of all the four seasons of
0.62, but in validation, the model accuracy slumped to
an N-S efficiency of 0.16. For all the four seasons,
the LS-SVM-R model had a trend of under-predicting
higher streamflows during the calibration phase, and in
validation, the trend was more an over-predicting one for
the majority of streamflows.

4.7. Results of MLR-based downscaling model
calibration and validation

Figure 6 shows the comparison of observed and MLR
downscaling model predicted monthly streamflows for
the calibration (1950–1989) and validation (1990–2010)
periods.

The MLR-based downscaling strategy displayed a
trend of largely over-predicting the high streamflows par-
ticularly after 1997 of the validation phase. The results of
the MLR model showed an N-S efficiency of 0.69 during
the calibration period and 0.33 in the validation period.
The corresponding SANS efficiencies for the MLR model
calibration and validation were 0.54 and 0.08, respec-
tively. In calibration, MLR-based downscaling models
tended to under-predict most of the high flows, and
in validation, the majority of streamflows were over-
estimated. The observed mean streamflow of 2129.3 ML
month−1 during the calibration was correctly reproduced
by the MLR-based model as 2132 ML month−1, while
the observed mean streamflow of 1318.5 ML month−1 in

the validation was over-estimated as 2018 ML month−1.
Figure 7 is a scatter plot representation of the stream-
flows generated by the MLR model, which provides pic-
torial evidence on under-prediction and over-prediction
of streamflows in calibration and validation, respec-
tively.

Figure 8 illustrates the seasonal scatter plots of the
MLR-based downscaling models, for the calibration and
validation phases. During summer calibration and val-
idation, the MLR-based models displayed the best N-S
efficiencies of 0.60 and 0.50, respectively, for all the four
seasons. The MLR model showed an N-S efficiency of
0.38 in autumn calibration, but failed largely in predicting
the autumn streamflows in the validation phase produc-
ing an N-S efficiency of −3.70. In autumn validation,
the MLR model clearly over-estimated the majority of
the streamflows. In winter, the MLR model attained N-S
efficiencies of 0.59 and 0.19 in calibration and valida-
tion, respectively. During spring, the MLR model was
calibrated with an N-S efficiency of 0.51, but a poor N-S
efficiency of −0.09 was observed in model validation.
For all the four seasons, during calibration, the MLR-
based model had a tendency of under-predicting most of
the high flows. In validation, the majority of flows were
over-predicted by MLR for all the four seasons.

4.8. Comparison of LS-SVM-R and MLR
downscaling approaches

The results of this study provided a platform for a com-
parison of the potential of LS-SVM-R (which is a com-
plex nonlinear downscaling technique) and MLR (which
is a less complicated linear downscaling technique) for
the prediction of monthly streamflows. The streamflow
data used in the calibration period from 1950 to 1989
referred to a relatively wetter climatic regime, while the
flow data used for the model validation was under a rela-
tively dryer climatic regime, especially after 1997, when
the recent drought in Victoria commenced. Furthermore,
the observed streamflow data had a larger scatter in the
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Figure 5. Seasonal scatter plots for calibration (left) and validation (right) of SVM-based model.

validation with a coefficient of variation of 1.36, than
in the calibration, in which the coefficient of variation
was 1.12. Table IV shows the statistical comparison of
the performances of the two modelling approaches in
the calibration and validation phases, together with the
attributes of the observed streamflows.

During the calibration phase (1950–1989) of the mod-
els, both LS-SVM-R and MLR techniques produced
very similar results with respect to the average stream-
flow, standard deviation and the N-S efficiency. The
LS-SVM-R and the MLR techniques reproduced the
observed average streamflow in the calibration phase
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Figure 6. Observed streamflow and MLR-predicted streamflow.

Figure 7. Scatter plots for calibration and validation phases of MLR-based model.

with a high degree of accuracy. The standard devia-
tion was not reproduced in calibration with an equal
level of precision by either of the two techniques. In
validation, both modelling techniques over-estimated the
overall average of streamflows as well as the standard
deviation of the observations, but MLR over-estimated
these statistics more than that of LS-SVM-R. The MLR
modelling technique displayed relatively poor results in
comparison to LS-SVM-R in validation in terms of N-S
efficiency, though MLR could produce equally good pre-
dictions as LS-SVM-R in calibration. The coefficient of
determination (R2) also provided an evaluation of model
performances, comparable to that of N-S efficiency, for
the calibration and validation of the two models.

Table V provides the performance details of the LS-
SVM-R and MLR modelling techniques on a seasonal
basis. For all the four seasons, during calibration, the
LS-SVM-R and MLR modelling techniques reproduced
the observed average streamflow successfully, but neither
of the two could correctly capture the observed stan-
dard deviation and coefficient of variation of the stream-
flow. In validation, LS-SVM-R- and MLR-based models

clearly over-estimated the monthly averages of stream-
flows for all the four seasons. In summer, the MLR-
based model yielded better performances than the LS-
SVM-R-based model displaying higher N-S efficiencies,
during both calibration and validation. The worst valida-
tion results were produced by the MLR-based model in
autumn with an N-S efficiency of −3.70; during the same
period, the LS-SVM-R-based model also failed with an
N-S efficiency of −2.45. Both modelling techniques dis-
played overall SANS efficiencies quite comparable with
the N-S efficiencies for the four seasons, in calibration
and validation. It was observed that the original N-S for-
mula produces overall model efficiencies higher than the
model efficiencies of seasons when there is a strong sea-
sonality in the streamflow regime.

4.9. Results of PC-based LS-SVM-R downscaling
model calibration and validation

The PC-based LS-SVM-R models developed for January
exhibited much poor performances in comparison with
the non-PC models (i.e. the models developed with the
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Figure 8. Seasonal scatter plots for calibration (left) and validation (right) of MLR-based model.

original standardized variables). Table VI shows a com-
parison of performances of non-PC and PC models devel-
oped using the LS-SVM-R technique for January. The
performances were measured with the N-S efficiency. It
was clearly observed that the non-PC model produces
much better results than the PC-based models in valida-
tion. In calibration, the PC models suffered severe over-
fitting as seen by poor performances during validation,

though they displayed increasingly high N-S efficiencies
during calibration with the number of PCs introduced
to it.

The PC-based LS-SVM-R models developed for
December displayed comparatively good results with
the non-PC model. Table VII provides a comparison of
performances of the non-PC model with the PC-based
models, established with LS-SVM-R for December.
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Table IV. Overall performances of LS-SVM-R and MLR modelling approaches.

Statistic Calibration (1950–1989) Validation (1990–2010)

Observation SVM MLR Observation SVM MLR

Avg 2129.33 2130.00 2132.00 1318.55 1910.00 2018.00
Std 2387.32 1975.15 1984.92 1788.14 1917.13 2124.94
Cv 1.12 0.93 0.93 1.36 1.00 1.05
SANS 0.59 0.54 0.27 0.08
N-S 0.73 0.69 0.47 0.33
R2 0.73 0.69 0.65 0.63

Avg = average monthly streamflow in ML month−1; Std = standard deviation of the streamflow in ML month−1;Cv = coefficient of variation;
SANS = seasonally adjusted Nash–Sutcliffe efficiency; N-S = Nash–Sutcliffe efficiency; R2 = coefficient of determination.

Table V. Season-wise performances of LS-SVM-R and MLR modelling approaches.

Model Statistic Calibration
Season

Validation
Season

Summer Autumn Winter Spring Summer Autumn Winter Spring

Observed Avg 794.69 676.69 3530.21 3515.74 612.43 232.98 2322.14 2167.73
LS-SVM-R 794.69 680.25 3530.21 3515.81 828.73 496.45 3299.94 3097.70
MLR 794.69 683.37 3530.21 3521.28 744.47 505.61 3501.36 3414.12
Observed Std 648.73 1028.03 2501.21 2713.95 1047.29 284.99 2152.02 1947.18
LS-SVM-R 431.22 630.80 1814.37 1999.07 420.69 517.84 1788.23 2179.77
MLR 504.26 626.49 1921.14 1919.39 468.94 554.83 2094.47 2309.65
Observed Cv 0.81 1.52 0.71 0.77 1.71 1.22 0.93 0.90
LS-SVM-R 0.54 0.93 0.51 0.57 0.51 1.04 0.54 0.70
MLR 0.63 0.92 0.54 0.55 0.63 1.10 0.60 0.68
LS-SVM-R N-S 0.55 0.45 0.56 0.62 0.39 −2.45 0.38 0.16
MLR 0.60 0.38 0.59 0.50 0.50 −3.70 0.19 −0.09
LS-SVM-R R2 0.56 0.46 0.56 0.63 0.55 0.22 0.60 0.54
MLR 0.60 0.38 0.59 0.51 0.65 0.07 0.55 0.53

Avg = average monthly streamflow in ML month−1; Std = standard deviation of the streamflow in ML month−1;Cv = coefficient of variation;
N-S = Nash–Sutcliffe efficiency; R2 = coefficient of determination.

Table VI. Performances of non-PC model against the PC-based models for January.

Month Phase Non-PC Model
8 inputs

5 PCs, 98%
variance explained

6 PCs, 99.4%
variance explained

7 PCs, 99.7%
variance explained

8 PCs, 100%
variance explained

January Calibration 0.37 0.55 0.77 0.80 0.93
Validation 0.16 −0.07 −0.17 −0.18 −0.78

Table VII. Performances of non-PC model against the PC-based models for December.

Month Phase Non-PCs Model
10 inputs

7 PCs, 98.3%
variance explained

8 PCs, 99.1%
variance explained

9 PCs, 99.8%
variance explained

10 PCs, 100%
variance explained

December Calibration 0.40 0.37 0.37 0.40 0.38
Validation 0.37 0.30 0.32 0.26 0.30

When the number of PCs was increased from seven to
ten, the model performances in calibration and validation
showed only a slight fluctuation and remained mainly
static.

According to the results given in Tables VI and VII, it
was seen that the models based on PCs performed well
for December, failed for January, in comparison with the
corresponding non-PC models. This was an interesting
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finding, as in general a PC-based model should perform
equally well as its non-PC model, since PCs are linear
combinations of the original variables from which they
were extracted.

5. Discussion

This study incorporated the volumetric soil moisture
content in the 0- to 10- and 10- to 200-cm soil layer,
which have not been used as probable predictors in past
streamflow downscaling studies. The selection of soil
moisture was based on the fact that it is highly influential
on the generation of streamflows (Timbal et al., 2002).
Soil retains moisture received from rain and depending
on its moisture content at the time, can reduce the wetting
up required before runoff is generated. Stored water
can also be subsequently released into streams, acting
as a temporary storage reservoir. This action lags the
influences of the rainfall on the streamflow generation,
highlighting the importance of the role played by soil
moisture on streamflow generation. For February, May,
June and October, model inputs were dominated by
the two soil moisture parameters, due to the reasonably
good correlations (0.40–0.65) observed between the soil
moisture and streamflow during these months.

The potential predictor selection was performed with
the Pearson correlation coefficients between the predic-
tors and the streamflows under three 20-year time slices,
unlike in past studies, where a single correlation over the
entire period of study has been considered. In this study,
the use of three 20-year time slices allowed the extrac-
tion of the best correlated variables consistently over time
from the set of probable predictors concerned. The pre-
dictors that showed good correlations consistently over
the three time slices with the streamflows were more
likely to maintain similar correlation under changing cli-
mate in future. In other words, predictors that showed
correlations with less fluctuation in terms of magnitudes
and signs, over time, are more likely to have consis-
tent relationships with streamflows in the future than the
predictors that did not exhibit the above characteristics.
Therefore, the use of multiple correlations under sev-
eral time slices will aid in the selection of more reliable
potential variables leading to a more reliable downscaling
model. However, there is no guarantee of the nature of
the correlation that the predictors will have in the future,
with streamflows.

LS-SVM-R and MLR techniques exhibited equally
good overall performances in calibration, but in valida-
tion, LS-SVM-R performed better than MLR. Both mod-
elling techniques under-estimated the majority of high
flows in calibration, and in validation, an over-estimating
trend of the majority of flows was observed. The level
of uncertainty associated with very high and very low
observed streamflows should be noted as it is within this
data range that most uncertainty is introduced during
streamflow measurements and with the associated rat-
ing curve. In general, due to practical difficulties, rating

curves are developed with the streamflow data corre-
sponding to ordinary flow conditions of a river. This leads
to extrapolation of the rating curve for high flows lead-
ing to errors in the estimation of high streamflows (Di
Baldassarre and Montanari, 2009). When the downscal-
ing models are calibrated to these data containing less
reliable low/high flows, it could possibly lead to errors
in the model, producing erroneous streamflow predic-
tions. This could be one source of errors in streamflows
data, used in this study, which has possibly contributed
to errors in the predictions of flows by the LS-SVM
and MLR downscaling models. Summer and winter flow
conditions were better predicted than those of autumn
and spring by LS-SVM-R and MLR techniques. The
worst flow predictions were seen in the autumn vali-
dation. The limited prediction ability of the LS-SVM-R
and MLR downscaling models in autumn well agreed
with the findings of Robertson and Wang (2008), where
a Bayesian joint probability model was used to predict
seasonal streamflows over Victoria. The model failure
in autumn could be due to the fact that, before autumn
the Victorian catchments are generally at a dry condi-
tion, and when the catchments get wet in autumn, they
absorbs most of the rain water depending on different
antecedent soil moisture conditions and this causes the
autumn rainfall to produce irregular contributions to the
streamflows. However, this phenomenon needs more sci-
entific investigation but has been believed to be true in
Victorian catchments.

The use of SANS efficiency is recommended in stud-
ies where the averages of streamflows in different sea-
sons are significantly different from the overall average
of the streamflow. The SANS efficiency estimates the
model performances considering the seasonal averages
of the streamflows, where as the original N-S formula
uses the overall average of streamflows across all sea-
sons. When applied to a streamflow data set exhibit-
ing strong seasonality, the original N-S formula pro-
duces higher overall model efficiency than those for the
four seasons. Owing to the inclusion of seasonal aver-
ages of streamflows, SANS efficiency produces overall
model performances comparable to those for the four
seasons. It is advisable to use N-S and SANS effi-
ciencies in addition to graphical techniques of model
evaluation such as scatter and time series plots to cal-
ibrate and validate the downscaling models. Graphical
illustrations of the results of a model could provide an
overall picture of the model predictions against observa-
tions, but a numerical performance criterion could only
produce only a numerical value to reflect model perfor-
mances.

Particularly after 1997, LS-SVM-R- and MLR-based
downscaling models tended to largely over-estimate
the high streamflows. The failure to correctly predict
the high values of the predictands such as stream-
flows and rainfalls was a well-observed phenomenon
in many of the past downscaling exercises (e.g. Ghosh
and Mujumdar, 2008). This is mainly because sta-
tistical downscaling models fail to capture the entire
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variance of the predictands (Tripathi et al., 2006).
The time series plots of the 23 NCEP/NCAR proba-
ble predictors averaged over the atmospheric domain
did not show any clear climate change signal cor-
responding to the post-1997 period, where a clear
step down in the observed streamflow time series was
seen.

In downscaling GCM outputs to streamflows, it is
highly advisable to expose the statistical downscaling
model to the widest possible range (from very low flows
to extremely high flows) of the observed streamflows.
This allows the statistical downscaling model to be fine-
tuned to the whole range of streamflows, resulting in
better performances in validation and more reliable future
flow projections. In this study, the calibration period
(1950–1989) contained a wide range of flows (ranging
from 0 to 12 427 ML month−1), though it contained more
high flows in comparison to the validation period. In the
validation period (1990–2010), the observed streamflow
ranged between 0 and 9387 ML month−1. According
to the above-mentioned facts and the time series plot
of observed streamflows (Figure 3), it was clear that
although there were no intense droughts in the calibra-
tion period, it included a wide range of flows adequate for
the satisfactory calibration of the model. Therefore, it was
suspected that the limited performances of the LS-SVM
and MLR models in validation period would possibly be
more associated with the NCEP/NCAR predictors, which
did not show a clear climate change signal correspond-
ing to the severe drought observed during the validation.
It was found that even when the downscaling model is
calibrated for the period 1990–2010 (which is the orig-
inal validation period), the model failed to adequately
reproduce the magnitudes of observed streamflows (over-
estimation of observed high flows etc.), although the sea-
sonal pattern was correctly modelled, during the severe
drought that occurred after 1997. This reinforced the con-
clusion that the limited performances of the LS-SVM
and MLR statistical downscaling models in the valida-
tion period (1990–2010) was clearly due to the failure
of NCEP/NCAR predictors, in properly characterizing
the drought during the post-1997 period. Therefore, it
was understood that when the inputs to the downscal-
ing model do not correctly characterize the regional cli-
mate, even if the calibration and validation periods are
changed, the model performances are hardly expected to
improve.

The post-1997 drought in Victoria is regarded as the
most severe drought (at times referred to as the Millen-
nium drought) observed in the historic records. Although
the GCM outputs used in this study did not exhibit a
clear climate change signal corresponding to this severe
drought, both LS-SVM- and MLR-based downscaling
models have correctly captured the seasonal pattern of the
streamflow (Figures 3 and 6) throughout the study period,
despite the fact that the models have failed to reproduce
the magnitudes of streamflows adequately. Therefore,
in this study, the outputs of the two statistical down-
scaling models (LS-SVM and MLR) have proven that

even during an hydroclimatic extreme such as the Mil-
lennium drought mentioned here, at least the seasonal
pattern of the actual streamflow could be correctly pre-
dicted with the GCM outputs. The seasonal pattern of the
streamflows could still aid in the water resources plan-
ning and management by providing a hint of the future
streamflow trends. According to Zhang et al. (2010),
the knowledge of trends in the streamflow is impor-
tant for the efficient management of water resources.
Furthermore, the post-1997 drought in Victoria was a
rare extreme hydroclimatic event, and therefore, model
failures such as that seen here are unlikely to be fre-
quent.

El Niño southern oscillation index (SOI), southern
annular mode and sea surface temperature (SST) indices,
including NINO 3, NINO 4, NINO 3.4, Indian Ocean
dipole and Indonesian SST index are reported to be
some of the climate indices that are influential on
the climate of Australia (Langford et al., 2011). In
this study, the lag zero and other lagged correlations
between the streamflow and SOI and NINO 3.4 indices
were computed. With streamflows, SOI and NINO 3.4
displayed increasingly poor correlations with the increase
in lag, indicating the absence of a clear climate change
signal in these indices, corresponding to the recent
Victorian drought started in 1997. Though some of these
indices showed poor correlations with streamflows, still
these could aid in the process of identifying an onset
of a wet or a dry hydroclimatic regime to occur. This
will enable the development and use of two different
downscaling models, one fine tuned for a relatively wet
regime and the other fine tuned for a relatively dry
regime, leading to more accurate predictions. Further
studies will be performed to analyse the influence of the
above-mentioned climate indices on the streamflow over
this study area, aiming to improve the performances of
the downscaling models already developed in this study.

The performances of the PC-based LS-SVM-R models
revealed that the PC analysis should be used with caution
in preparing input variables for a downscaling model.
In this study, the coefficients of PCs derived for the
calibration phase (based on the calibration predictor
data) were applied on the validation predictor data to
generate PCs for the validation phase. These coefficients
of PCs are needed for generating PC inputs for the
downscaling model for future hydroclimatic projections,
since they become a static component of the model. This
process could distort the PCs in validation by making
them markedly correlated, which was a violation of the
near-zero correlation property of PCs. Theoretically, PCs
should display zero or near-zero correlations among each
other. The PCs corresponding to the calibration phase
remained zero or near-zero correlated. The PCs derived
for the validation of the January LS-SVM-R models
were more correlated among each other than those of
December, possibly causing a greater failure for January
model during the validation.
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6. Conclusions

This study provides a detailed comparison of the use
of least square support vector machine regression (LS-
SVM-R) and multi-linear regression (MLR) for down-
scaling monthly general circulation model (GCM) outputs
to catchment-level monthly streamflows. Downscaling
streamflows directly from the GCMs minimizes the time
and effort involved in complex hydrologic modelling, in
predicting streamflows. To the best of the authors’ knowl-
edge, this article presents the first effort in statistically
downscaling GCM outputs directly to catchment stream-
flows in Australia.

The inclusion of soil moisture parameters in probable
GCM predictors enabled the consideration of contribu-
tion of soil moisture in streamflow generation. The study
emphasized the selection of consistently correlated GCM
predictors with the predictand, over the entire period
of the analysis, since this allows for the building a
more robust downscaling model. This was performed by
splitting the entire predictor (GCM outputs)–predictand
(streamflow) data set into three 20-year time slices and
selecting the predictors that showed good, statistically
significant Pearson correlation coefficients with the pre-
dictand consistently over all the three time slices and
during the whole period.

Based on the results of the present downscaling study,
it was concluded that LS-SVM-R has a better potential in
downscaling GCM predictors to catchment-level stream-
flows than that of MLR, but still MLR is a potential
technique for a statistical downscaling study. The LS-
SVM-R- and MLR-based downscaling models developed
in this study showed reasonable capability in predicting
the streamflows in summer and winter despite the limited
performances shown in autumn. The low performances in
the downscaling models after the 1997 drought in Victoria
was clearly due to the absence of a clear climate change
signal in the GCM predictors used in the study. This was
proven by the limited performances exhibited by the LS-
SVM model, when it was calibrated for the 1990–2010
period, which included the post-1997 drought. However,
a robust downscaling model should be able to produce
reasonable predictions in validation irrespective of the
hydroclimatic regime to which it was exposed in the cal-
ibration.
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