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Abstract

Two statistical downscaling models were developed for downscaling monthly GCM

outputs to precipitation at a site in north-western Victoria, Australia. The first

downscaling model was calibrated and validated with the NCEP/NCAR reanalysis

outputs over the periods of 1950-1989 and 1990-2010 respectively. The projections of

precipitation into future were produced by introducing the outputs of HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1, pertaining to A2 and B1 greenhouse gas emission

scenarios to this downscaling model. In this model, the input data used in the

development and future projections are not homogeneous, as they originate from two

different sources. As a solution to this issue, the second downscaling model was

developed and precipitation projections into future were produced with a homogeneous

set of inputs. To produce a homogeneous set of inputs to this model, regression

relationships were formulated between the NCEP/NCAR reanalysis outputs and the 20th

century climate experiment outputs corresponding to the variables used in the first

downscaling model obtained from the ensemble consisted of HadCM3, ECHAM5 and

GFDL2.0. The outputs of these relationships pertaining to the periods of 1950-1989 and

1990-1999, were used for the calibration and validation of this downscaling model

respectively. Using the outputs of HadCM3, ECHAM5 and GFDL2.0 pertaining to A2

and B1 emission scenarios on these relationships, inputs for the second downscaling

model pertaining to the period of 2000-2099 were generated. The first downscaling

model with NCEP/NCAR reanalysis outputs, showed a high Nash-Sutcliffe Efficiency

(NSE) of 0.75 over the period 1950-1999. When this downscaling model was run with

the 20th century climate experiment outputs of HadCM3, ECHAM5, GFDL2.0 and

GFDL2.1, it exhibited limited performances over the period 1950-1999, which was
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indicated by relatively low NSEs of -0.62, -2.54, -0.40 and -0.48 respectively. The

second downscaling model displayed a NSE of 0.35 over the period 1950-1999.

Keywords: Statistical downscaling, Precipitation, General Circulation Models, Multi-

model ensemble



4

1. INTRODUCTION

General Circulation Models (GCMs) are widely used for the simulation of future

climate (King et al., 2012). GCMs are based on atmospheric physics and they project

the climate at global or continental scales into future, with acceptable reliability,

considering the concentrations of greenhouse gases (GHG) in the atmosphere (Huth,

2002). However, due to the coarse spatial resolution of GCM projections, their direct

use at regional/local scale is limited (Jeong et al., 2012). Dynamic and statistical

downscaling techniques have been developed to relate the coarse resolution GCM

outputs with regional scale hydroclimatic variables such as precipitation, temperature,

streamflow etc. IPCC (2007) defined downscaling as the process of producing sub-

spatial scale climatic information from the coarse scale GCM outputs. In dynamic

downscaling, a regional climate model (RCM) is nested in a GCM to provide the

boundary conditions for the simulation of climate at regional scale. Owing to the

physics based structure, dynamic downscaling can yield more realistic predictions of

regional climate. Furthermore, dynamic downscaling can produce spatially continuous

projections of climate, while preserving some spatial correlations (Maurer and

Hidalgo, 2008). However, dynamic downscaling suffers from high computational costs

and the proper function of the parameterization schemes (sub-grid scale processes are

parameterised in RCMs) in future climate is uncertain (IPCC, 2007). In statistical

downscaling, empirical relationships are built between the GCM outputs and

observations of hydroclimatic variables. These relationships are used with GCM outputs

pertaining to future for the projection of point scale hydroclimatology. Statistical

downscaling techniques are computationally cheaper, therefore they are widely used in

the projection of local scale climate. Statistical downscaling methods are applicable to
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finer spatial scales (point scale) than spatial scales at which most dynamic downscaling

methods produce their outputs (Willems et al., 2012). Also with a relatively limited

knowledge in atmospheric physics a statistical downscaling model can be developed.

Furthermore statistical downscaling methods are capable in producing data of

predictands that are not included in the outputs of GCMs such as streamflows, leaf

wetness etc. All statistical downscaling techniques are dependent on the assumption that

the relationships derived between GCM outputs and catchment scale hydroclimatic

variables for the past, are also valid for the changing climate in future

(Wilby and Wigly, 2000). However, in the presence of human induced climate change,

this assumption seems to be doubtful.

Owing to the computational limitations, various assumptions and approximations are

employed in GCMs. The assumptions and approximations employed in GCMs cause

noise in their outputs. Furthermore, these assumptions and approximations vary from

one GCM to another (Sachindra et al., 2013b). Due to this inter-GCM structural

difference, they tend to produce different climatic projections (Yu et al., 2002).

Therefore, when outputs of GCMs are either statistically or dynamically downscaled,

different GCMs tend to produce different predictions at the catchment scale. Decision

making based on a wide range of predictions is a difficult task. Ensemble predictions

have become popular in the study of climate change as they aid in combining multiple

predictions into single prediction (Krishnamurti et al., 1999; Kharin and Zwiers, 2002;

Yun et al., 2003, 2005). Two distinct types of ensembles are found in the literature; (1)

an ensemble consisting of a set of predictions obtained from single model (e.g.

numerical weather forecasting model) and (2) an ensemble of predictions obtained from
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number of different models (Kharin and Zwiers, 2002). The former type of ensemble is

more popular in numerical weather forecasting. The latter was designated the multi-

model “superensemble” by Krishnamurti et al. (1999). However, Kharin and Zwiers

(2002) commented that there should be a proper designation for an ensemble which

contains the individual predictions derived from different GCMs or numerical weather

models, as “superensemble” does not aptly describe the nature of this ensemble. In this

paper, here onwards the ensemble of multiple GCMs or numerical weather models is

designated the multi-model ensemble.

There are several techniques available for deriving ensemble predictions from

predictions of single model or individual predictions from a group of models. The most

widely used technique is averaging (Zhang and Huang, 2013). Maqsood et al. (2004)

called this technique the basic ensemble method, as it is the simplest technique for

producing an ensemble prediction. In this technique, the outputs of the members of the

ensemble are added together and divided by the number of members in the ensemble.

Averaging an ensemble of predictions is one of the approaches to reduce the noise in the

individual predictions (Kharin et al., 2001). According to Warner et al. (2010), often,

the average of an ensemble of predictions (ensemble average) is more accurate than any

individual prediction in the ensemble. Also Knutti et al. (2010) demonstrated that multi-

model ensemble averages consistently outperform the performances of any single model

involved in the ensemble. Fealy and Sweeney (2008) used averaging to obtain ensemble

predictions of temperature, radiation and potential evapotranspiration which were

downscaled form several GCMs. In averaging, simply, equal weights are assigned to

each member in the ensemble. The drawback of averaging is that, although equal
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weights are assigned to each ensemble member (e.g. GCM), their accuracies may vary

from one ensemble member to another (Maqsood et al., 2004, Yun et al., 2005).

As a solution to the above issue, method of assigning weights to each member of the

ensemble based on their performances is used. According to Zhang and Huang (2013),

assigning weights to each individual member of the ensemble based on their

performances can reduce the uncertainty in the final projection. The assigning of

weights to each member of the ensemble is achieved in number of different ways.

However, the basis of the weighting method is to give more preference to the model that

presents less error in reproducing the observed climate of the past. Ingol-Blanco (2011)

used the method of weighted averaging on an ensemble of five GCMs. In that study, the

GCM outputs were downscaled to precipitation and temperature for the simulation of

streamflows using a hydrologic model. The weights for each GCM of the ensemble for

each calendar month was determined using the ratio between the root mean square error

of a certain GCM in simulating streamflow and the sum of the root mean square errors

of all GCM in the ensemble in simulating streamflow. Zhang and Huang (2013) used a

set of model performance parameters for determining the weights for the members in an

ensemble of 4 RCMs. In that study, the performance parameters considered for each

RCM included, their ability to reproduce; inter-annual and seasonal circulation patterns

of precipitation and temperature, extremes of daily precipitation and temperature,

precipitation occurrence, and probability density functions of precipitation and

temperature. The skill scores derived for each of the above parameters were combined

to a weight value which can explain the overall performance of each RCM. This method

of considering the ability of ensemble members in reproducing multiple climatic
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characteristics is a better method of assigning weights to ensemble members, as it

considers multiple characteristics of the members of the ensemble, unlike the other

averaging approaches (e.g. simple averaging). However, according to Christensen et al.

(2010) still there is large subjectivity in the selection of parameters (e.g. extremes of

daily precipitation - Zhang and Huang, 2013) for the assessment of GCM performances

and also how the final weights are derived from the model assessment. Furthermore, the

technique used by Zhang and Huang (2013) is computationally costly as multiple

characteristics of each of the members in the ensemble have to be assessed.

As another ensemble technique, Krishnamurti et al. (1999) proposed the regression of

outputs of different climate models against observations, for deriving an ensemble

prediction. They used the outputs of several GCMs for developing the multi-linear

regression relationships between them and the corresponding observations. It was found

that the multi-model ensemble developed using the multi-linear regression technique

outperforms predictions of all individual models and also the ensemble prediction

obtained by simple averaging. Yun et al. (2003) used this method prescribed by

Krishnamurti et al. (1999), in a slightly different format employing singular value

decomposition for improving the coefficients of the multi-linear regression equations.

However, when the relationship between the observations (or reanalysis outputs) and

GCM outputs is non-linear in nature, non-linear regression may better model this

relationship, although its computational cost is higher due to complexity.

It is the common practice to develop (calibrate and validate) a statistical downscaling

model with some reanalysis outputs (e.g. National Centre for Environmental
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Predictions/National Centre for Atmospheric Research - NCEP/NCAR) and

observations pertaining to the past climate. Thereafter, the outputs of a GCM (or

GCMs) are introduced to the downscaling model for the projection of climate into

future. The major flaw associated with this approach is that, the downscaling model is

developed with some reanalysis outputs which are of higher quality (due to quality

controlling and corrective procedures), but the future projections are produced with the

outputs of a GCM (or GCMs) which are associated with higher degree of uncertainty. In

other words, the input data sets used in the development phase of the downscaling

model and the future projection phase are not homogeneous, in terms of quality, as they

originate from two different sources with different degrees of accuracy. Therefore in the

above approach there is no smooth transition from the model development phase to the

future projection phase. As a solution to this issue, Sachindra et al. (2013b) proposed a

statistical downscaling model purely developed (calibrated and validated) with the 20th

century climate experiment outputs of HadCM3, for downscaling monthly precipitation,

which can be used for downscaling the future projections of climate of the same GCM

to catchment scale. However, in that study it was found that the performances of this

downscaling model in the calibration and validation periods were quite limited in

comparison with another downscaling model developed with NCEP/NCAR reanalysis

outputs for the same purpose. Furthermore in that study, a large mismatch was

identified between the raw precipitation output of HadCM3 and that of NCEP/NCAR

reanalysis data. This mismatch reflected the bias prevalent in HadCM3 outputs.

This paper discusses the development (calibration and validation) of two statistical

downscaling models based on the multi-linear regression (MLR) technique for
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downscaling GCM outputs to monthly precipitation at a station located in the

Grampians water supply system in north-western Victoria, Australia. Also these two

downscaling models were used for the projection of precipitation into future at this

station with the outputs of GCMs. The first downscaling model was developed with the

NCEP/NCAR reanalysis outputs. The precipitation projections into future were

produced by introducing the outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1 to

this downscaling model, individually. Smith and Chandler (2009) stated that HadCM3,

ECHAM5, GFDL2.0, GFDL2.1 and MIROC3.2 provide good representation of

precipitation over the Australian continent and credible simulation of El Niño Southern

Oscillation (ENSO). Hence in this study, HadCM3, ECHAM5, GFDL2.0 and GFDL2.1

were used to provide inputs to the downscaling models. MIROC3.2 was not employed

in this study due to the limited availability of its output data. The second downscaling

model was developed (calibrated and validated) with a set of input data derived by

building relationships (equations) between the 20th century climate experiment outputs

of HadCM3, ECHAM5 and GFDL2.0 and the corresponding NCEP/NCAR reanalysis

outputs, using the MLR technique. GFDL2.1 was not used in the second downscaling

model since it showed limited performance in terms of coefficient of determination in

comparison with its older version GFDL2.0, when used with the first downscaling

model (as described later in Section 4.5). The MLR equations were used for deriving

the inputs for the downscaling model for producing projections into future with the

outputs of the above three GCMs pertaining to the future climate. Therefore this

approach allows for the use of a homogeneous set of inputs for the development of the

downscaling model and also for producing climatic projections into future, while

maintaining a certain degree of consistency with the NCEP/NCAR reanalysis outputs by
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reducing the mismatch (bias) of GCM outputs with the NCEP/NCAR reanalysis

outputs, to a certain extent. The equidistant quantile mapping technique (Li et al., 2010)

was used for the correction of bias in the precipitation downscaled by both downscaling

models for the past and future climate. A performance comparison of the above two

statistical downscaling models for the calibration and validation periods is also provided

in this paper.

Section 2 of this paper provides a short account on the study area and the data used in

the present research. Section 3 details the generic methodology. Section 4 explains the

application of this generic methodology to the precipitation station of interest along

with the results. Finally, a summary on the work and conclusions yielded in this study

are provided in Section 5.

2. STUDY AREA AND DATA

For the case study, the precipitation station at the Halls Gap post office (latitude -

37.14˚S, longitude 142.52˚E) was selected. This precipitation station is located in the

Grampians water supply system in north-western Victoria, Australia, within the

operational area of the Grampians Wimmera Mallee Water Corporation (GWMWater)

(www.gwmwater.org.au). In order to demonstrate of the methodology only the

observation station at the Halls Gap post office was considered in this study.

Furthermore, during the period 1950-2010, the observations of precipitation at the Halls

Gap post office displayed high correlations (magnitudes above 0.80 at p ≤ 0.05) with

those at other surrounding stations (Eversley, Great Western, Polkemmet, Lake

Lonsdale, Moyston post office, Wartook reservoir, Hamilton airport, Tottington,
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Stawell, Balmoral post office and Ararat prison) in the study area. Therefore it was

assumed that the projections produced at the Halls Gap post office are also valid for the

other stations that were highly correlated with it. Figure 1 shows the location of this

precipitation station in the operational area of the GWMWater.

Figure 1 Location of the precipitation station

A record of observed daily precipitation for the period 1950 – 2010 was obtained from

the SILO database of Queensland Climate Change Centre of Excellence at

http://www.longpaddock.qld.gov.au/silo/, for the calibration and validation of the two

downscaling models. In the period 1950-2010, the daily observations of precipitation at

the Halls Gap post office contained 31.2% missing data and these missing data have

been filled by the Queensland Climate Change Centre of Excellence in the SILO

database, using the spatial interpolation method detailed in Jeffrey et al. (2001). These

daily data in the SILO database were used to compute precipitation totals in each month

over the period 1950-2010. The observed precipitation record was also used in the bias-

correction, as the reference data set. In order to provide inputs to the first downscaling

model and to build the MLR relationships with the GCM outputs for developing of the

second downscaling model, monthly NCEP/NCAR reanalysis outputs were downloaded

from the physical sciences division of National Oceanic and Atmospheric

Administration/Earth System Research Laboratory (NOAA/ESRL) at

http://www.esrl.noaa.gov/psd/.
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The monthly outputs of HadCM3(2.75˚ latitude by 3.75˚ longitude), ECHAM5(1.865˚

latitude by 1.875˚ longitude), GFDL2.0(2.022˚ latitude by 2.50˚ longitude) and

GFDL2.1(2.022˚ latitude by 2.50˚ longitude) for the 20th century climate experiment

were extracted from the Programme for Climate Model Diagnosis and Inter-comparison

(PCMDI) (https://esgcet.llnl.gov:8443/index.jsp) for the period 1950-1999, to provide

the inputs to both downscaling models for the reproduction of the past observed

precipitation. For the validation of the bias-correction, HadCM3 outputs pertaining to

the COMMIT GHG emission scenarios were obtained from

https://esgcet.llnl.gov:8443/index.jsp for the period 2000-2099. The COMMIT GHG

emission scenarios assumed that the atmospheric GHG concentrations observed at year

2000 remain constant throughout the 21st century. The monthly outputs of HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1 for the A2 and the B1 GHG emission scenarios

(IPCC, 2000) were obtained for the period 2000 – 2099, from

https://esgcet.llnl.gov:8443/index.jsp, in order to provide inputs to the two downscaling

models, for producing the projections of catchment scale precipitation into future. The

A2 emission scenario refers to a future world with a greater economic focus and the B1

scenario describes a future world oriented more towards environmental protection than

rapid economic development.
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3. GENERIC METHODOLOGY

3.1. Atmospheric domain and predictor selection

As the first step of the study, an atmospheric domain over the study area was defined. In

a downscaling study, the atmospheric domain enables the consideration of the

influences of the surrounding atmosphere on the climate at the station of interest.

A set of probable predictors for this study was first selected based on the past literature

on downscaling precipitation and also hydrology. These probable predictors are the

most likely variables to influence precipitation at the catchment scale. The potential

predictors which are the most influential variables on precipitation were extracted from

the set of probable variables. The relationship between the predictors (e.g. reanalysis or

GCM output) and predictands (e.g. precipitation) vary seasonally due to the seasonal

variations of the atmospheric motions (Karl et al., 1990). Therefore to represent the

seasonality of the predictor-predictand relationships, the potential predictors were

selected from the pool of probable predictors, for each calendar month separately. Using

these sets of potential predictors, a separate downscaling model was developed for each

calendar month. This approach aids in better modelling the seasonal variations of

precipitation. Throughout this study, the MLR technique was used in developing the

statistical downscaling models as it has been identified as a potential technique for

developing downscaling models in the studies by Sachindra et al. (2013a, 2013b).

The data for probable predictors were extracted from the NCEP/NCAR reanalysis

database. These reanalysis data for probable predictors and observed precipitation were

split chronologically into 20 year time slices. Then the Pearson correlation coefficients
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(Pearson, 1895) between them were computed for each time slice and the whole period,

at all grid points in the atmospheric domain, for each calendar month. As recommended

by Sachindra et al. (2013a), the probable predictors that showed the best statistically

significant correlations (p ≤ 0.05), consistently in all 20 year time slices and the whole

period were selected as potential predictors. These consistently correlated variables

referred to the predictor variables which displayed no sign variations and no large

variations in the magnitude in their correlations with the observed precipitation, over all

time slices and the whole period of the study.

3.2. Downscaling model with NCEP/NCAR outputs

The development (calibration and validation) of the first downscaling model was done

by using the NCEP/NCAR reanalysis outputs corresponding to the potential predictors

identified in the previous sub-section. The first two third of the reanalysis and observed

precipitation was allocated for the calibration of this downscaling model and the

remaining one third was used for the validation of the model. The potential predictors

for both the calibration and validation phases were standardised by subtracting the mean

and then dividing by the standard deviation of the NCEP/NCAR reanalysis outputs

pertaining to the calibration period of the downscaling model. The means and the

standard deviations of the NCEP/NCAR reanalysis outputs pertaining to the calibration

period were used for standardising the input data to the downscaling model in

calibration, validation and future projection periods (Sachindra et al., 2013c). In the

calibration of this model, first, the three potential predictors which showed the best

correlations with precipitation over the whole period of the study were introduced to the

model. The optimum values for the coefficients and constants in the MLR equations
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were found by minimising the sum of squared errors between the observed precipitation

and precipitation reproduced by the downscaling model. Thereafter the model validation

was performed with this calibrated downscaling model as an independent simulation.

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) was used in assessing

the performances of the downscaling model in the calibration and validation periods.

Thereafter the next potential predictors which displayed the best correlation with

observed precipitation over the whole period were introduced to the model, one at a

time. This procedure was continued until the model performance in validation reaches a

maximum, in terms of NSE. This process of stepwise model development enabled

finding the best set of potential predictors and the best downscaling model for a

calendar month. In this manner, downscaling models were calibrated and validated for

each calendar month, while identifying the best potential predictors for each calendar

month. For the development of this downscaling model, the statistics toolbox in

MATLAB (R2008b) was used.

The 20th century climate experiment outputs and the outputs of future GHG emission

scenarios of several GCMs (in this study HadCM3, ECHAM5, GFDL2.0 and GFDL2.1)

corresponding to the best potential predictors identified in the model development stage

were standardised with the means and the standard deviations of the NCEP/NCAR

reanalysis outputs pertaining to the model calibration period, for each calendar month.

The 20th century climate experiment outputs of GCMs represent the climate in the last

century. Therefore they can be used on the downscaling model to reproduce the past

climatic observations at the catchment scale. The standardised 20th century climate

experiment outputs of each GCM were introduced to the downscaling model for the
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reproduction of past observed precipitation at the station of interest. This was important

in judging how this downscaling model which was built with reanalysis data will

perform in downscaling GCM outputs to precipitation at the catchment scale. The

standardised GCM outputs for future were applied to the downscaling model to project

precipitation into future, at the station of interest. These two sets of precipitation

(reproduced past and projected future) were bias-corrected using the equidistant quantile

mapping technique. In equidistant quantile mapping (Li et al., 2010), the empirical

cumulative distribution functions (CDFs) are computed for the observed precipitation,

and also for the past and future precipitation produced by the downscaling model with

GCM outputs as inputs to it. As the first step, in equidistant quantile mapping, the CDF

of precipitation reproduced by the downscaling model for the past was exactly mapped

onto the CDF of the observed precipitation. This made all the statistical moments of

model-reproduced past precipitation to match with those of observed precipitation. In

the bias-correction of precipitation downscaled by the model pertaining to future, the

difference between the CDF of the downscaled precipitation (to be corrected)

corresponding to future and the CDF of the precipitation of the past climate reproduced

by the downscaling model with 20th century climate experiment outputs of GCM, was

added to the bias-corrected version of the latter CDF (Salvi et al., 2011). A detailed

description on equidistant quantile mapping is found in the studies by Li et al. (2010),

Salvi et al. (2011) and Sachindra et al. (2013c).

Principal component (PC) analysis is a technique used in order to extract the variance

present in a large set of predictors to a limited number of PCs (e.g. Tripathi et al., 2006;

Anandhi et al., 2008). In this manner, principal component analysis (PCA) can



18

minimise the redundancy errors caused by the inter-correlated predictors used as inputs

to a downscaling model. However, caution must be exercised in applying PCA in

downscaling as it can cause serious errors in the outputs of the downscaling model. The

coefficients of the PCs extracted from the potential predictor data for the calibration

phase of the downscaling model, becomes a fixed component of the downscaling model

in its validation and future projection phases. In such case, some PCs pertaining to the

validation period or the future projection period may become markedly correlated. In

theory, PCs need to be near zero correlated with each other. Use of PCs that are

considerably correlated with each other, in the validation and future projection phases

can cause serious errors in model predictions. This phenomenon was well documented

by Sachindra et al. (2013a). Hence PCA was not used in preparing inputs to the

downscaling models developed in the present study.

3.3. Downscaling model with multi-model ensemble outputs

For the development of the second downscaling model, the same atmospheric domain

and the same sets of best potential predictors identified during the development process

of the first downscaling model were used. It was assumed that these best potential

predictors are valid for both downscaling models, as the predictand (in this case

monthly precipitation) and the point at the catchment (precipitation station) remained

the same for both models. Unlike in the first downscaling model, in this downscaling

model, the calibration and validation processes were not performed using the

NCEP/NCAR reanalysis outputs. Instead, the 20th century climate experiment outputs of

an ensemble of GCMs were regressed with the NCEP/NCAR reanalysis outputs using

multi-linear regression to create a new set of inputs for the development of this
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downscaling model. This new set of inputs used for the development of the downscaling

model is called the multi-model ensemble output in this paper. This approach of

producing a multi-model ensemble output enables the use of a homogeneous set of

inputs to the downscaling model in calibration, validation and future projection periods.

Furthermore, since the outputs of the ensemble members (GCMs used) are regressed

against the reanalysis outputs, the presence of any mismatch between the GCM outputs

and reanalysis outputs in the multi-model ensemble output is reduced. Thus, the above

procedure of the multi-model ensemble outputs can also act as a simple bias-correction.

The use of multiple GCMs in producing the inputs to the downscaling model can avoid

the dependence on a single GCM in projecting catchment scale climate into future.

There were three distinct stages in the establishment of the second downscaling model.

At the first stage, the inputs (multi-model ensemble outputs) to the downscaling model

were produced. At the second stage, the downscaling model was calibrated and

validated with these inputs developed in the first stage. At the third stage, the multi-

model ensemble outputs pertaining to climate in the future were introduced to this

downscaling model for the projection of catchment level precipitation at the station of

interest into future.

At stage one, for developing the inputs for the second downscaling model, the

NCEP/NCAR reanalysis outputs and the 20th century climate experiment outputs of the

ensemble members (in this study HadCM3, ECHAM5, GFDL2.0) were standardised

with the means and the standard deviations of NCEP/NCAR reanalysis outputs

pertaining to the calibration period of the downscaling model, for each calendar month.
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This downscaling model also had the same calibration period as the first downscaling

model which was detailed in Section 3.2. Then for each best potential predictor in each

calendar month, a MLR equation was fitted between the NCEP/NCAR reanalysis

outputs and the pertaining 20th century climate experiment outputs of the ensemble

members, corresponding to the calibration period of the downscaling model. The 20th

century climate experiment outputs of the ensemble members, pertaining to the

validation period of the downscaling model were introduced to the above developed

MLR equations for generating the inputs for the validation phase of the downscaling

model.

At stage two, for each calendar month, the multi-model ensemble outputs pertaining to

the best set of potential predictors were introduced to the downscaling model and it was

calibrated by minimising the sum of squared errors between the observed precipitation

and precipitation reproduced by the downscaling model. Since the best potential

predictors were already selected in the development of the first downscaling model, in

building the second downscaling model, stepwise addition of predictors was not needed.

Following the calibration, the downscaling model was validated with the multi-model

ensemble outputs relevant to the validation phase of this model. For the development of

this downscaling model, the statistics toolbox in MATLAB (Version - R2008b) was

used.

At stage three, the outputs of the GCMs corresponding to climate in future were

standardised with the means and the standard deviations of the NCEP/NCAR reanalysis

outputs pertaining to the calibration period of the downscaling model. These
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standardised GCM outputs (corresponding to GHG emission scenarios) were applied on

the MLR equations developed between the NCEP/NCAR reanalysis outputs and the 20th

century climate experiment outputs of GCMs to generate the inputs to the downscaling

model for producing precipitation projections into future. These multi-model ensemble

outputs for the future climate were introduced to the downscaling model to downscale

them to catchment scale precipitation. As described Section 3.2, the equidistant quantile

mapping technique was applied to correct the bias in the precipitation output of this

downscaling model.

3.4. Evaluation of the performances of downscaling models

The performances of both downscaling models in the calibration and validation periods

were assessed numerically and graphically. The numerical assessment of the two

downscaling models was performed by comparing the statistics of the precipitation

reproduced by the downscaling model with those of the observed precipitation. These

statistics included the average, standard deviation, coefficient of variation, NSE,

Seasonally Adjusted NSE (SANS) (Wang, 2006; Sachindra et al., 2013a) and the

coefficient of determination (R2). Scatter and time series plots were used to provide a

graphical comparison between the model predictions and observations.

4. APPLICATION

The generic methodology described in Section 3 was applied to the precipitation station

at Halls Gap post office in north western Victoria, Australia (see Figure 1).
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4.1. Atmospheric domain and predictor selection

An atmospheric domain which covered the range of longitudes from 135.0˚E to 150.0˚E

and the range of latitudes from -30.0˚S to -42.4˚S was selected for this study. This

domain contained 7 and 6 grid points in the longitudinal and latitudinal directions

respectively. Hence, it contained a total of 42 grid points. The atmospheric domain used

in this study is shown in Figure 1. The grid points in Figure 1 were 2.5˚ apart in both

longitudinal and latitudinal directions. This spatial resolution was maintained to comply

with the resolution of the NCEP/NCAR reanalysis outputs. Note that, all GCM outputs

used in this study were first interpolated to the NCEP/NCAR reanalysis grid shown

(atmospheric domain) in Figure 2, using the inverse distance weighted method. The

same atmospheric domain over the same study area was used by Sachindra et al.

(2013a) for downscaling NCEP/NCAR reanalysis outputs to monthly streamflows at a

station which is located close to the precipitation station considered in this study.

Figure 2 Atmospheric domain for downscaling

A set of probable predictors was selected following the studies of Anandhi et al. (2008)

and Timbal et al. (2009), on downscaling GCM outputs to precipitation. Also the

hydrology of the precipitation generation was considered in the selection of probable

predictors. Timbal et al. (2009) identified the predictors influential on the precipitation

in south eastern Australia, which covers the study area of this research. The 23 probable

predictors used in the current downscaling exercise included; geopotential heights at

200hPa, 500hPa, 700hPa, 850hPa and 1000hPa pressure levels; relative humidity at

500hPa, 700hPa, 850hPa and 1000hPa pressure levels; specific humidity at 2m height,
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500hPa, 850hPa and 1000hPa pressure levels; air temperatures at 2m height, 500hPa,

850hPa and 1000hPa pressure levels; surface skin temperature, surface pressure, mean

sea level pressure, surface precipitation rate, and zonal and meridional wind speeds at

850hpa pressure level. The monthly NCEP/NCAR reanalysis data pertaining to the

above 23 probable predictors at the 42 grid locations shown in Figure 2 were obtained

from http://www.esrl.noaa.gov/psd/, for the period 1950-2010.

The NCEP/NCAR reanalysis data for the above 23 probable predictors and the observed

precipitation were separated into three 20 year time slices; 1950-1969, 1970-1989, and

1990-2010. Following this, the Pearson correlation coefficients between the probable

predictors and observed precipitation were computed for the three time slices and the

whole period (1950-2010) at each grid point shown in Figure 1. The predictors which

displayed the best statistically significant correlations (p ≤ 0.05) in the three time slices

and the whole period were selected as the potential predictor set. For extracting

potential predictors, this process was performed for all calendar months separately.

4.2. Downscaling model with NCEP/NCAR outputs

The NCEP/NCAR reanalysis data for the potential predictors (selected as described in

Section 4.1) and the observed precipitation data were split into two groups,

chronologically. The first group contained the potential predictor and observed

precipitation data from 1950 to 1989, and these data were used for the calibration of the

first downscaling model. The rest of the data from 1989 to 2010 was used for the

validation of this downscaling model. The first downscaling model which was

developed with the NCEP/NCAR reanalysis outputs is referred to as Model(NCEP/NCAR),
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in this paper. The means and the standard deviations of potential predictors

(NCEP/NCAR reanalysis data) corresponding to the calibration period (1950-1989)

were used in standardising the potential predictors for both the calibration and

validation periods. The standardised potential predictors were ranked according to the

magnitude of the correlation with observed monthly precipitation over the period 1950-

2010. Initially, the three best potential predictors (with ranks 1, 2 and 3) were

introduced to the downscaling model and it was calibrated by minimising the sum of

squared errors between the model predictions and observations. Thereafter the model

was validated as an independent simulation, while keeping the optimum values of

constants and coefficients (of the MLR equations) which were yielded in calibration

fixed. Thereafter the 4th, 5th etc ranked potential predictors were introduced to the

downscaling model and it was calibrated and validated. This stepwise addition of

potential predictors was performed until the model performance in validation in terms

of NSE reaches its maximum. Thus, the best sets of potential predictors were identified

for each calendar month. Table i shows the best sets of potential predictors selected for

each calendar month. The same sets of the best potential predictors were used in the

development of the second downscaling model, which is detailed in Section 4.3.

Table i Best sets of potential predictors for each calendar month

4.3. Downscaling model with multi-model ensemble outputs

Unlike the first downscaling model (Section 4.2), the second downscaling model was

not calibrated and validated with the NCEP/NCAR reanalysis data. For the calibration

and validation of this downscaling model a set of input data was created using the
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outputs of an ensemble of three GCMs which consisted of; HadCM3, ECHAM5 and

GFDL2.0. Since these three GCMs originate from three independent organisations it

was assumed that they possess different internal structures and hence it was assumed

that they are quite independent of each other. Due to the limited performances shown by

GFDL2.1 when its outputs were used with Model(NCEP/NCAR) (see Figure 7 and Table iv

later in this paper), it was not used in producing inputs to the second downscaling

model, described in this section. Considering the above reasons, these three GCM were

selected for producing the input for this downscaling model. The 20th century climate

experiment data of HadCM3, ECHAM5 and GFDL2.0 relevant to the best sets of

potential predictors shown in Table i were obtained for the period 1950-1999. These

data were then regresses with the corresponding NCEP/NCAR reanalysis outputs for the

period 1950-1989, using the MLR technique. This yielded a MLR relationship between

NCEP/NCAR reanalysis outputs and the 20th century climate experiment outputs of the

ensemble members, for each best potential predictor for each calendar month. Using the

outputs of the ensemble members in these relationships, a single output corresponding

to all ensemble members (called multi-model ensemble outputs in this paper) for each

best potential predictor in each calendar month was derived for the period 1950-1999.

These multi-model ensemble outputs were used as input to the second downscaling

model in its calibration and validation. Following the procedure detailed in Section 3.3,

this downscaling model was calibrated and validated. Unlike in the development of the

Model(NCEP/NCAR), the stepwise construction procedure was not adopted in the

development of this downscaling model, as the best potential predictors for each

calendar month had been already identified. This second downscaling model is referred

to as Model(Ensemble) in this paper.



26

4.4. Calibration and validation results for Model(NCEP/NCAR) and Model(Ensemble)

Figure 3 shows the time series plots for the observed precipitation and the precipitation

reproduced by the Model(NCEP/NCAR) during the period 1950-2010. According to the time

series plots, it was evident that this model was able to reproduce the pattern of

precipitation well in both the calibration and validation periods. This was valid even for

the period 1997-2010, that included the Millennium drought in Victoria, which caused a

significant drop in precipitation.

Figure 3 Observed and Model(NCEP/NCAR) reproduced monthly precipitation (1950 to

2010)

Figure 4 displays the scatter plots for the calibration (1950-1989) and validation (1990-

2010) periods of the Model(NCEP/NCAR). During both the calibration and validation

phases, the Model(NCEP/NCAR) showed good accuracy in reproducing the observed

precipitation. However, there was a trend of under-predicting high precipitation values

and over-predicting near zero precipitation values in both phases. The coefficient of

determination (R2) was high and quite comparable for both calibration (R2 = 0.74) and

validation (R2 = 0.72) periods of this model. Also the NSEs were high for both

calibration (NSE = 0.74) and validation (NSE = 0.70) periods of the model.

Figure 4 Scatter plots of observed and Model(NCEP/NCAR) reproduced monthly

precipitation for calibration (1950-1989) and validation (1990-2010)
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Figure 5 shows the time series plots for the observed precipitation and precipitation

reproduced by the Model(Ensemble) for the period 1950-1999. This downscaling model

was able to capture the pattern of observed precipitation throughout the calibration and

validation periods, but it showed limited capability in correctly reproducing the extreme

precipitation values. The latter trend was less evident in the time series of precipitation

reproduced by Model(NCEP/NCAR).

Figure 5 Observed and Model(Ensemble) reproduced monthly precipitation (1950 to 1999)

Figure 6 presents the scatter plots for the calibration (1950-1989) and validation (1990-

1999) phases of the Model(Ensemble). In the calibration and validation phases this model, it

showed a large under-predicting trend for the high precipitation values. The low

precipitation values were largely over-predicted in the calibration period of this model.

The under-predicting trend of high precipitation values was more severe in the outputs

of this downscaling model, in comparison with that of Model(NCEP/NCAR). During the

validation period the scatter was quite high for the precipitation reproduced by the

Model(Ensemble). The R2 for the calibration and validation were 0.47 and 0.13

respectively. The NSEs for the calibration and validation were 0.47 and -0.08

respectively.

Figure 6 Scatter plots of observed and Model(Ensemble) reproduced monthly precipitation

for calibration (1950-1989) and validation (1990-1999)
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According to the scatter plots in Figures 4 and 6, it can be seen that Model(NCEP/NCAR) is

more capable in reproducing the observed precipitation than its counterpart

Model(Ensemble). This was due to the fact that the quality of NCEP/NCAR reanalysis

outputs used as inputs to the Model(NCEP/NCAR) were much higher than that of GCM

outputs used in the preparation of inputs to the Model(Ensemble). The NCEP/NCAR

reanalysis outputs are quality controlled and corrected against observations (Kalnay et

al., 1996), and therefore they are inherently more accurate than any GCM output.

Table ii provides the performance statistics of Model(NCEP/NCAR) and Model(Ensemble) for

the calibration and validation periods. Model(NCEP/NCAR) and Model(Ensemble) had the same

calibration period from 1950 to 1989. However, Model(NCEP/NCAR) was validated over

the period 1999 to 2010 and Model(Ensemble) was validated for the period 1990 to 1999.

This was because the 20th century climate experiment outputs of HadCM3, ECHAM5

and GFDL2.0 terminated at 1999. Both downscaling models reproduced the average of

the observed precipitation during the calibration period quite accurately. In validation,

both downscaling models over-estimated the average of precipitation. The standard

deviation of the observed precipitation was under-estimated by both downscaling

models in their calibration and validation phases. However, the severity of the under-

estimation of the standard deviation was relatively higher for the Model(Ensemble). The

under-estimation of the standard deviation was due to the inherent characteristic of

statistical downscaling models in failure to properly explain the entire variance of the

predictand (Thripathi et al., 2006). Similar to the standard deviation, the coefficient of

variation was also under-predicted by both Model(NCEP/NCAR) and Model(Ensemble), in

calibration and validation. The NSE, SANS and R2 for the Model(NCEP/NCAR) were
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comparable in calibration and validation. However, for the Model(Ensemble) the NSE,

SANS and R2 in validation, were quite low in comparison to those statistics in its

calibration phase.

Table ii Performances of the two downscaling models in calibration and validation

Table iii provides the seasonal statistics of the precipitation reproduced by the two

downscaling models. In all four seasons, both downscaling models perfectly reproduced

the average of observed precipitation in their calibration phases. In validation,

Model(NCEP/NCAR) showed an over-prediction of average of precipitation in all four

seasons and Model(Ensemble) under-estimated the average of precipitation in summer and

over-predicted it in other seasons. Model(NCEP/NCAR) and Model(Ensemble) under-estimated

the standard deviation of observed precipitation during all seasons in the calibration

phase. This was a more noticeable characteristic in the precipitation reproduced by

Model(Ensemble). In validation, Model(Ensemble) indicated an over-estimation of the standard

deviation of precipitation in autumn, during the rest of the seasons it was under-

predicted. Model(NCEP/NCAR) continued to show an under-predicting trend for the

standard deviation in validation, in all seasons. The coefficient of variation was also

under-estimated by both downscaling models, in all seasons. Model(NCEP/NCAR) showed

relatively better NSEs and R2 values than its counterpart Model(Ensemble) in calibration

and validation, during all seasons. Model(Ensemble) exhibited negative NSEs and near zero

R2 values in the validation period for all four seasons.

Table iii Seasonal performances of the two downscaling models



30

4.5. Reproduction of past observed precipitation with GCM outputs applied to

Model(NCEP/NCAR)

The Model(NCEP/NCAR) outperformed its counterpart Model(Ensemble) in calibration and

validation. However, it does not guarantee that the Model(NCEP/NCAR) will be better than

the Model(Ensemble) in precipitation projections produced for future. This is because the

Model(NCEP/NCAR) was calibrated and validated with a better quality reanalysis data set,

and the projections into future by this downscaling model are produced with the outputs

of GCMs pertaining to future. Unlike reanalysis outputs, GCM outputs are associated

with higher degree of uncertainty, as they do not undergo any correction against

observations. Therefore it was interesting to see how the Model(NCEP/NCAR) would

reproduce the past observed precipitation with the 20th century climate experiment

outputs of several GCMs. This analysis was important as Model(NCEP/NCAR) is meant to

be used with GCM outputs pertaining to future climate for the projection of catchment

scale precipitation into future. The 20th century climate experiment outputs of HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1 for the period 1950-1999 were standardised with

the means and the standard deviations of NCEP/NCAR reanalysis outputs

corresponding to the calibration period (1950-1989) of the Model(NCEP/NCAR). Thereafter

these standardised GCM outputs were introduced to the Model(NCEP/NCAR) for

reproducing the past observed precipitation in the period 1950-1999.

Figures 7c, 7d, 7e and 7f show the precipitation reproduced by Model(NCEP/NCAR) when it

was run with the 20th century climate experiment outputs of HadCM3, ECHAM5,
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GFDL2.0 and GFDL2.1 for the period 1950-1999, respectively. Also the precipitation

reproduced by Model(NCEP/NCAR) with NCEP/NCAR reanalysis data (see Figure 7a) and

that of Model(Ensemble) with multi-model ensemble outputs (see Figure 7b) for the period

1950-1999 also shown, as references.

Figure 7 Precipitation reproduced by Model(NCEP/NCAR) and Model(Ensemble) for period

1950-1999

Model(NCEP/NCAR) with NCEP/NCAR outputs showed the least scatter in all six scatter

plots in Figure 7. This was numerically proven by the relatively high R2 value of 0.75.

The scatter of the precipitation reproduced by Model(Ensemble) when it was run with the

multi-model ensemble outputs was much higher than that of Model(NCEP/NCAR) when it

was run with the NCEP/NCAR outputs. However the scatter of precipitation reproduced

by Model(NCEP/NCAR) with the 20th century climate experiment outputs of HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1 were quite high with a relatively low R2 values

further reinforced this fact. Overall, when Model(NCEP/NCAR) was run with HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1 outputs displayed an over-estimating trend for

precipitation. This trend was more evident when this downscaling model was run with

the 20th century climate experiment outputs of ECHAM5 than with the outputs of any

other GCM. According to the scatter plots 7b, 7c, 7d, 7e and 7f, it was seen that the

Model(Ensemble) can perform better than its counterpart Model(NCEP/NCAR), when it was run

with HadCM3, ECHAM5, GFDL2.0 and GFDL2.1 outputs. The bias prevalent in the

outputs of GCMs was one of the reasons for the large scatter exhibited by
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Model(NCEP/NCAR) when it was run with the 20th century climate experiment outputs of

HadCM3, ECHAM5, GFDL2.0 and GFDL2.1.

Table iv shows the statistics of the precipitation reproduced by the Model(NCEP/NCAR) for

the period 1950-1999, when it was run with the 20th century climate experiment outputs

of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1. Also the statistics of precipitation

reproduced by Model(NCEP/NCAR) with NCEP/NCAR reanalysis outputs and

Model(Ensemble) with multi-model ensemble outputs are also shown in the same table.

Model(NCEP/NCAR) with NCEP/NCAR reanalysis outputs and Model(Ensemble) with multi-

model ensemble outputs reproduced the average of precipitation quite accurately. When

the Model(NCEP/NCAR) was run with HadCM3, ECHAM5, GFDL2.0 and GFDL2.1

outputs, the average precipitation was over-estimated by a large margin compared to the

observed. This trend was highest when the Model(NCEP/NCAR) was run with the 20th

century climate experiment outputs of ECHAM5. Model(NCEP/NCAR) was able to

reproduce the standard deviation of precipitation closely, when it was run with HadCM3

outputs and also with the outputs of GFDL2.0. The 20th century climate experiment

outputs of ECHAM5, made the Model(NCEP/NCAR) to largely over-estimate the standard

deviation of the observed precipitation. Model(NCEP/NCAR) with outputs of ECHAM5

over-estimated the coefficient of variation of precipitation, while all other models

under-estimated the coefficient of variation. The minimum of precipitation was

correctly produced by the Model(NCEP/NCAR) when it was run with NCEP/NCAR,

HadCM3 and GFDL2.0 outputs. The maximum of precipitation was largely over-

predicted by Model(NCEP/NCAR) when it was run with outputs of ECHAM5 and slightly
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over-predicted when this downscaling model was driven with HadCM3 outputs.

Model(Ensemble) severely under-estimated the maximum of the observed precipitation.

When Model(NCEP/NCAR) was run with the NCEP/NCAR outputs, it displayed the highest

R2 value of 0.75 and the highest NSE of 0.75 for the period 1950-1999. In reproducing

the observed precipitation of the period 1950-1999, with the 20th century climate

experiment outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1, Model(NCEP/NCAR)

showed limited performances in comparison with its performances when it was run with

the NCEP/NCAR reanalysis outputs. The Model(Ensemble) indicated a better R2 value of

0.36 and a NSE of 0.35 when it was run with the multi-model ensemble outputs, in

comparison to the R2 values and NSEs produced by Model(NCEP/NCAR) when it was run

with the outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1. Model(NCEP/NCAR)

showed a NSE of -0.48 (R2 = 0.03) when it was run with the outputs of GFDL2.1,

while with the outputs of GFDL2.0 (i.e. this is the previous version of GDL2.1), it

produced a NSE of -0.40 (R2= 0.15). Due to this relatively limited performance

exhibited by GFDL2.1 compared to that of GFDL2.0, only GFDL2.0 was used for

producing the multi-model ensemble outputs for the Model(Ensemble).

Table iv Performances of Model(NCEP/NCAR) and Model(Ensemble) with inputs form different

sources (1950-1999)

A correlation coefficient analysis performed between the 20th century climate

experiment outputs of HadCM3 and NCEP/NCAR reanalysis outputs pertaining to the

probable predictors used in this study revealed that all these correlations were quite
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weak (e.g. 0.2 – 0.4) during the period 1950-1999. This indicated that there is large bias

in the 20th century climate experiment outputs of HadCM3 relative to NCEP/NCAR

reanalysis outputs. Hence it was assumed that such large bias is prevalent in the 20th

century climate experiment outputs of ECHAM5, GFDL2.0 and GFDL2.1. Therefore it

was argued that, even if the potential predictors were separately extracted for

Model(Ensemble) considering the correlations between the multi-model ensemble outputs

generated using the 20th century climate experiment outputs of HadCM3, ECHAM5 and

GFDL2.0, the performances of Model(Ensemble) are unlikely to improve.

4.6. Bias-correction and future projections

Section 4.6.1 provides the details of the statistics of the bias-corrected precipitation

outputs of Model(NCEP/NCAR) and Model(Ensemble) for the period 1950-1999. A validation

of the bias-correction is provided in Section 4.6.2. The details of the statistics of the

bias-corrected precipitation projections of Model(NCEP/NCAR) and Model(Ensemble),

pertaining to the future period 2000-2099, are presented in Section 4.6.3.

4.6.1 Bias-correction of past precipitation of Model(NCEP/NCAR) and Model(Ensemble)

According to Salvi et al. (2011), bias is the disagreement between the GCM outputs and

observations. Bias in GCM outputs are due to various assumptions and approximations

employed in the structure of the GCM which cause their outputs to deviate from the

observations. Sachindra et al. (2013b) demonstrated the bias in the raw precipitation

output of HadCM3 against the precipitation output of NCEP/NCAR, and emphasised

the need of a correction to bias. According to Sharma et al. (2007) and Ojha et al.
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(2012), the bias in GCM outputs should be corrected prior to their subsequent use. The

correction of bias can be achieved in two different ways; (1) the correction of bias in

raw GCM outputs (prior to downscaling) and (2) the correction of bias in the outputs

(e.g. precipitation) of a downscaling model which was run with GCM outputs

(following downscaling). The latter bias-correction approach involves less

computational cost in comparison with the former method.

Sachindra et al. (2013c) found that when the scatter of the variable to be bias-corrected

is quite large, any bias-correction technique could possibly lead to marginal

improvement of the time series of the variable. In that study, monthly bias-correction

(Johnson and Sharma, 2012), nested bias-correction (Johnson and Sharma, 2012) and

equidistant quantile mapping (Li et al., 2010) were used for the correction of bias in the

monthly precipitation outputs of a downscaling model. There it was found that, even

when the scatter of the variable is quite high, the statistical moments of it could be

corrected successfully, by using the equidistant quantile mapping technique, but still

with almost no improvement in the time series.

In the present study, since the scatter of precipitation reproduced by both downscaling

models when they were run with the 20th century climate experiment outputs of GCMs

was quite high, it was decided to employ the equidistant quantile mapping technique for

the correction of bias. The theory and application of the equidistant quantile mapping

technique was well documented in the works of Li et al. (2010), Salvi et al. (2011) and

Sachindra et al. (2013c). A brief account on the equidistant quantile mapping technique

was included in Section 3.2 of this paper. The equidistant quantile mapping technique
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was applied to the precipitation produced by Model(NCEP/NCAR) and Model(Ensemble) for the

past period 1950-1999 and for the future period 2000-2099. This bias-correction

procedure was performed for each calendar month separately.

Table v shows the statistics of precipitation reproduced by Model(NCEP/NCAR) when it was

run with the outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1 and

Model(Ensemble) when it was run with the multi-model ensemble outputs, for the period

1950-1999, before and after the bias-correction with the equidistant quantile mapping

technique. The precipitation reproduced by Model(NCEP/NCAR) when it was run with the

20th century climate experiment outputs of HadCM3, ECHAM5 and GFDL2.0 were

added together and the time series of the average prediction was calculated. In the

calculation of the time series of the average prediction of precipitation, predictions

produced by Model(NCEP/NCAR) when it was run with the outputs of GFDL2.1 was not

included, as GFDL2.1 was not included in the generation of the multi-model ensemble

outputs for the Model(Ensemble). This enabled the comparison of the statistics of the

average prediction with those produced by Model(Ensemble). The statistics of this average

prediction calculated before and after the application of the bias-correction to the

outputs of Model(NCEP/NCAR) are also shown in Table v. Note that, in the statistics of the

average prediction, the bias-correction was done for the individual outputs of

Model(NCEP/NCAR) rather than on the time series of the average prediction. All statistics

prior to bias-correction are shown in brackets.

Table v Performances of Model(NCEP/NCAR) and Model(Ensemble) with inputs form different

sources (1950-1999), before and after bias-correction
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According to Table v, it was seen that for the past climate of the period 1950-1999,

equidistant quantile mapping matches the statistical moments (e.g. average) of

downscaled precipitation with those of observed precipitation perfectly. This was due to

the fact, that in equidistant quantile mapping, the CDF of downscaled precipitation is

mapped onto that of observed precipitation. However, in case of the average

precipitation prediction calculated from the bias-corrected precipitation of

Model(NCEP/NCAR) when it was run with the 20th century climate experiment outputs of

HadCM3, ECHAM5 and GFDL2.0, indicated a proper correction only to its average.

The other statistics of this time series such as the standard deviation were not properly

corrected by the bias-correction, as this time series was calculated from the bias-

corrected precipitation outputs of Model(NCEP/NCAR) when it was run with the outputs of

HadCM3, ECHAM5 and GFDL2.0, rather than from a bias-corrected version of the

average prediction. It was seen that, even prior to the correction of bias, Model(Ensemble)

can reproduce the average of precipitation with better accuracy than those obtained

when Model(NCEP/NCAR) was run with the outputs of HadCM3, ECHAM5, GFDL2.0 and

GFDL2.1 and also the average prediction calculated from the outputs of

Model(NCEP/NCAR) when it was run with the outputs of HadCM3, ECHAM5 and

GFDL2.0. Before and after the bias-correction, Model(Ensemble) displayed R2 values

higher than those for the Model(NCEP/NCAR) when it was run with the outputs of HadCM3,

ECHAM5, GFDL2.0 and GFDL2.1. Hence, it was concluded that Model(Ensemble) when

it was run with the multi-model ensemble outputs, is more reliable than

Model(NCEP/NCAR) when it was run with GCM outputs. The MLR equations built between

the NCEP/NCAR reanalysis outputs and GCM outputs for generating the multi-model
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ensemble outputs for Model(Ensemble) are dependent on the performances of the individual

members of the ensemble. Therefore, the multi-model ensemble predictions produced

into future are depend on the past performances of the individual members of the

ensemble (Yun et al., 2005).

It was noticed that, after the bias-correction, the R2 values and NSEs hardly improved

for the precipitation reproduced by the Model(NCEP/NCAR) when it was run with the

outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1, in spite the correction of the

CDF. This was also true for the Model(Ensemble) when it was with the multi-model

ensemble outputs. This indicated that, after the application of equidistant quantile

mapping, the time series of precipitation has not improved significantly. Therefore it

was realised that although equidistant quantile mapping can correct the statistical

moments of a variable (e.g. precipitation), it cannot reduce the scatter of the variable

successfully.

Theoretically, the bias correction of each individual GCM’s outputs (HadCM3,

ECAHM5, GFDL2.0 and GFDL2.1) against NCEP/NCAR reanalysis outputs and then

applying them to Model(NCEP/NCAR) should improve the performances of this

downscaling model. However, for any improvement to the precipitation reproduced by

Model(NCEP/NCAR) run with the individually bias-corrected GCM outputs, the bias-

correction should have significantly improved the time series of each output of each

GCM. Sachindra et al. (2013c) compared the raw precipitation output of HadCM3

against the precipitation output of NCEP/NCAR reanalysis data pertaining to grid point

{4,4} in the same atmospheric domain shown in Figure 2, and found that there is large
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bias which is characterised by large scatter in the precipitation output of HadCM3. Then

it was assumed that there can be such large bias in all predictors of all GCMs. Sachindra

et al. (2013c) proved that when the bias in a certain variable is large, the bias-correction

does not improve its time series. This fact was again proven in Table v where the R2

values of precipitation have hardly improved in all cases, following the bias-correction.

For a significant improvement to the outputs of a downscaling model, the time series of

each GCM output should be considerably enhanced, however, the bias-correction

techniques are not capable of this yet. Therefore it was realised that even if the bias-

correction was applied to each individual GCM output, any improvement to the

performance of the Model(NCEP/NCAR) is highly unlikely.

4.6.2 Validation of bias-correction

Although the equidistant quantile mapping technique, as the bias-correction method,

matched all statistical moments of the precipitation reproduced by the downscaling

models with those of past observed precipitation, how it will function in future climate

is not certain. Therefore some validation of the equidistant quantile mapping technique

is needed. For this validation, Model(NCEP/NCAR) was run with the outputs of HadCM3

pertaining to the COMMIT GHG emission scenario for the period 2000-2099. The

outputs of ECHAM5 pertaining to the COMMIT emission scenario were not readily

available for downloading. Therefore, the Model(Ensemble) was not run for the COMMIT

emission scenario. The COMMIT GHG emission scenario assumes that the atmospheric

GHG concentrations observed at year 2000 remain the same throughout the century

(Ojha et al., 2010). Since the atmospheric GHG concentrations observed at year 2000

remain the same throughout the 21st century, it can be assumed that this scenario can
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also closely reflect the statistics of the climate in the latter half of the 20th century.

Therefore it can be assumed that the statistics of climate downscaled with the GCM

outputs (e.g. HadCM3) pertaining to the COMMIT GHG emission scenario for the

period 2000-2099 can closely represent the statistics of the past observed climate of the

period 1950-1999. Following this assumption, it was decided to run the

Model(NCEP/NCAR) with the outputs of HadCM3 relevant to the COMMIT GHG emission

scenario for the period 2000-2099, and compare the statistics of bias-corrected

precipitation with those of past observed precipitation for the period 1950-1999.

The HadCM3 outputs pertaining to the COMMIT GHG emission scenario for the period

2000-2099 were standardised with the means and the standard deviations of

NCEP/NCAR reanalysis outputs corresponding to the period 1950-1989. These were

then introduced to the Model(NCEP/NCAR) to project precipitation at the point of interest

into future. Then, using the equidistant quantile mapping technique, this precipitation

projection for the future was bias-corrected. In this case, the difference between the

CDF of precipitation reproduced by Model(NCEP/NCAR) when it was run with the outputs

of HadCM3 for the COMMIT GHG emission scenario and the CDF of precipitation

reproduced by Model(NCEP/NCAR) when it was run with the outputs of HadCM3

corresponding to the 20th century climate experiment, was added to the bias-corrected

version of the latter CDF. This yielded the bias-corrected precipitation projections

pertaining to the climate in future.

Table vi shows the statistics of observed precipitation for the period 1950-1999, and

also the statistics of precipitation downscaled with the HadCM3 outputs corresponding
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to the COMMIT GHG emission scenario for the period 2000-2099, before and after the

bias-correction.

Table vi Performances of Model(NCEP/NCAR) with HadCM3 outputs pertaining to the

COMMIT GHG emission scenario (2000-2099), before and after bias-correction

According to Table vi, it was seen that there is a large mismatch between the average of

observed precipitation and that of precipitation reproduced by the Model(NCEP/NCAR) for

COMMIT GHG emission scenario, prior to the application of the bias-correction.

However, after the application of the equidistant quantile mapping technique, this

mismatch in the average of precipitation was largely reduced. The standard deviation of

precipitation produced by the downscaling model with HadCM3 COMMIT outputs was

in close agreement with that of observations, despite slight over-estimation. Following

the bias-correction, the coefficient of variation was successfully corrected to match with

that of observed precipitation. The minimum of precipitation was slightly over-

estimated by the downscaling model prior to bias-correction; however this was perfectly

corrected by the bias-correction technique. The maximum of precipitation was further

over-estimated by the bias-correction. Based on the above comparison, it was realised

that, after the application of the equidistant quantile mapping technique, the statistics of

the precipitation produced by Model(NCEP/NCAR) when it was run with the outputs of

HadCM3 pertaining to the COMMIT GHG emission scenario could closely resemble

those of past observed precipitation. This indicated that, the equidistant quantile

mapping technique is also capable in bias-correcting the precipitation pertaining to the
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future climate, hence, it was assumed that it will correct the bias in precipitation

projections produced by the two downscaling models into future.

4.6.3 Bias-corrected future precipitation projections

For the projection of precipitation into future, the A2 and the B1 GHG emission

scenarios defined by the IPCC were selected. The A2 GHG emission scenario refers to a

future world with rapid economic growth. Hence it is associated with relatively high

levels of GHG emissions. The B1 GHG emission scenario refers to a world with high

level of focus on the environment and sustainable development; therefore it refers to

relatively low levels of atmospheric GHGs. The A2 and B1 GHG emission scenarios

referred to carbon dioxide concentrations of about 850 ppm and 550 ppm respectively,

by the end of the 21st century (IPCC, 2000). Due to the distinct differences in the A2

and B1 emission scenarios, it was assumed that the precipitation projections derived

from them could depict a diverse range in the precipitation regime under changing

climate.

The monthly precipitation at the station of interest was produced for the period 2000-

2099, by introducing the standardised outputs of HadCM3, ECHAM5, GFDL2.0 and

GFDL2.1 pertaining to A2 and B1 GHG emission scenarios to the Model(NCEP/NCAR).

Also, the multi-model ensemble outputs produced with the outputs of HadCM3,

ECHAM5, and GFDL2.0 corresponding to A2 and B1 GHG emission scenarios were

introduced to the Model(Ensemble) for the projection of precipitation into the future period

2000-2099. Following the procedure described in Section 3.2, the precipitation

produced by Model(NCEP/NCAR) when it was run with outputs of HadCM3, ECHAM5,
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GFDL2.0 and GFDL2.1 and the precipitation produced by Model(Ensemble) when it was

run with multi-model ensemble outputs, for the future period 2000-2099, were bias-

corrected. The procedure for the bias-correction of precipitation pertaining to the future

climate was exactly the same as that used in the validation of the bias-correction

described in Section 4.6.2.

Table vii shows the percentage changes of the statistics of the bias-corrected

precipitation for the period 2000-2099, with respect to the statistics of the observed

precipitation of the period 1950-1999. These precipitation projections into future were

produced by the Model(NCEP/NCAR) with the outputs of different GCMs and by the

Model(Ensemble) with the multi-model ensemble outputs, for the future period 2000-2099,

under the A2 and the B1 GHG emission scenarios. The precipitation projections (into

future) produced by Model(NCEP/NCAR) when it was run with the outputs of HadCM3,

ECHAM5 and GFDL2.0 (after bias-correction) were added together to produce time

series of average precipitation, for both A2 and the B1 GHG emission scenarios. The

percentage changes in the statistics of these time series with respect to the statistics of

the observed precipitation of the period 1950-1999 were also added to Table vii (see

“Average of Model(NCEP/NCAR)” in Table vii). These percentage changes in the statistics

were compared with those of precipitation outputs produced by Model(Ensemble), at the

end of this section.

According to Table vii, Model(NCEP/NCAR) indicated a drop in the average of precipitation

in summer when it was run with HadCM3 and GFDL2.1 outputs pertaining to the A2

and B1 GHG emission scenarios. Similarly, in autumn a decline in the average of
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precipitation was indicated by Model(NCEP/NCAR) with the outputs of GFDL2.0 and

GFDL2.1 under both A2 and B1 scenarios. HadCM3 and GFDL2.1 outputs on

Model(NCEP/NCAR) produced an increase in the average of precipitation in winter for both

emission scenarios. When Model(NCEP/NCAR) was run with the outputs of HadCM3 and

ECHAM5, it showed a decline in the average of precipitation for A2 and B1 scenarios,

in spring. It was seen that, when Model(NCEP/NCAR) was run with the outputs of different

GCMs, it tended to produce mixed results for the average of the precipitation

corresponding to future. When Model(Ensemble) was run with the multi-model ensemble

outputs, it showed an increase in the average of precipitation in summer, autumn and

winter. However, this rise in the average of precipitation in autumn and winter was

quite limited. It was concluded that the average of precipitation produced by the

downscaling models, pertaining to the future, is dependent on the inputs introduced to

it.

Model(NCEP/NCAR) with HadCM3, ECHAM5 and GFDL2.0 outputs showed a rising trend

in the standard deviation of precipitation in summer, for both A2 and B1. In autumn,

Model(NCEP/NCAR) showed a decrease in the standard deviation of precipitation when it

was run with the outputs of GFDL2.0 and GFDL2.1, for both emission scenarios. In

winter, Model(NCEP/NCAR) indicated an increase in the standard deviation of precipitation

with the outputs of all GCMs, for both emission scenarios. In spring, except with the

outputs of ECHAM5, Model(NCEP/NCAR) indicated a rise in the standard deviation of

precipitation for both scenarios with the outputs of all other GCMs. Overall, it was seen

that for the majority of the cases, Model(NCEP/NCAR) shows a rise in the standard

deviation of precipitation under both emission scenarios. Meanwhile Model(Ensemble)
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displayed a drop in the standard deviation of the precipitation during all four seasons

under both A2 and B1 scenarios.

Apart from GFDL2.1 which showed a decrease in the maximum monthly precipitation

produced by Model(NCEP/NCAR), in summer and autumn under B1 scenario, all other

GCMs indicated an increase in the maximum monthly precipitation produced by

Model(NCEP/NCAR) in all seasons, for both emission scenarios. This showed that the

severity of maximum monthly precipitation values tends to increase in future with the

rising GHG concentrations in the atmosphere. However, for both emission scenarios,

Model(Ensemble) displayed a decrease in the maximum monthly precipitation in summer,

autumn and winter and an increase in it only in spring. It was concluded that, in spring,

there is greater likelihood for maximum monthly precipitation to increase.

In autumn and spring, Model(NCEP/NCAR) showed an increase in the percentage of months

with zero precipitation with the outputs of all GCMs. In winter, Model(NCEP/NCAR)

displayed limited changes in the percentage of months with zero precipitation for both

emission scenarios, when it was run with the outputs of all GCMs. Model(Ensemble)

showed a decrease in the percentage of months with zero precipitation only in summer

and it indicated no change in the percentage of months with zero precipitation in the

other seasons. Considering the outputs of Model(NCEP/NCAR) and Model(Ensemble) it can be

concluded that, in future, the percentage of months with zero precipitation is unlikely to

decrease in autumn, winter and spring.
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HadCM3, ECHAM5 and GFDL2.0 outputs displayed a decrease in the percentage of

months with above average precipitation in summer under A2 and B1 emission

scenarios when those were applied on the Model(NCEP/NCAR). In spring, a rising trend was

exhibited by the both Model(NCEP/NCAR) and Model(Ensemble) with the outputs of all GCMs,

for both GHG emission scenarios. Hence, it was realised that, in spring, the percentage

of months with above average precipitation is likely to decrease in future.

The average projections of precipitation calculated from the outputs of Model(NCEP/NCAR)

when it was run with the outputs of HadCM3, ECHAM5 and GFDL2.0, indicated a

drop in the average of precipitation in autumn and spring, for both emission scenarios.

However, Model(Ensemble) showed a drop in the average of precipitation only in spring,

under B1 emission scenario. It was seen that there is little agreement between the

averages of precipitation of the average projections computed from the outputs of

Model(NCEP/NCAR) and the projections produced by Model(Ensemble). However, the average

projections computed from the outputs of Model(NCEP/NCAR) and the projections produced

by Model(Ensemble) indicated a decline in the standard deviation in all seasons, under both

A2 and B1 emission scenarios. In summer, autumn and winter, the average projections

obtained from the outputs of Model(NCEP/NCAR) and the projections of Model(Ensemble)

showed a decrease in the magnitude of the maximum monthly precipitation, for both

emission scenarios. In summer, the average projections obtained from the outputs of

Model(NCEP/NCAR) and the projections produced by Model(Ensemble) indicated a decrease in

the percentage of months with zero precipitation and in other seasons no change in the

percentage of months with zero precipitation was seen, under A2 and B1 emission

scenarios. The average projections obtained from the outputs of Model(NCEP/NCAR) and
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the projections produced by Model(Ensemble) indicated relatively small changes in the

percentage of months with above average precipitation, in all seasons, for both A2 and

B1 emission scenarios. It was seen that, the average projections obtained from the

outputs of Model(NCEP/NCAR) when it was run with the outputs of HadCM3, ECHAM5

and GFDL2.0 and the projections produced by Model(Ensemble) when it was run with the

multi-model ensemble outputs show similar trends in the standard deviation, the

monthly maximum precipitation and the percentage of months with zero precipitation,

in the majority of seasons, over the period 2000-2099.

For the management of water resources, the knowledge of long-term statistics of

monthly precipitation such as average, variance, extremes etc, in advance, is of great

importance. The average of the precipitation is an indication of the availability of water

in the catchment and the variance provides the information on the possible fluctuations

in the precipitation regime. The knowledge of the extreme precipitation is useful in the

effective management of floods and droughts. Since the observation station at Halls Gap

post office is located in an important agricultural and water supply area, the point

specific precipitation projections produced in this study under different GCMs and

different GHG emission scenarios will aid the water resources managers in planning

and management of water resources.

Table vii Percentage changes of statistics of bias-corrected precipitation of

Model(NCEP/NCAR) Model(Ensemble) and for period 2000-2099, with respect to statistics of

observed precipitation of period 1950-1999
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According to the median estimates obtained from the raw precipitation outputs of

number of GCMs under B1 (low emissions), and A1F1 (high emissions) emission

scenarios, the average of precipitation over the Wimmera region which include the

present study area has indicated a decline in all seasons by year 2070. (Victorian

Government Department of Sustainability and Environment, 2008). Furthermore, Smith

and Chandler (2009) commented that raw precipitation outputs of HadCM3 under the

A1B emission scenario (medium emissions) indicates a decline in the average of

precipitation of about 15% in the period 2071-2099 in comparison to the average of

observed precipitation pertaining to the period 1971-2000, over the Murray Darling

basin in south east Australia. The present precipitation station at Halls Gap post office is

also located within the Murray Darling basin and according to the present study the

precipitation downscaled from the outputs of HadCM3 under A2 and B1 emission

scenarios at this station for the period 2071-2099, showed a decrease in the average of

precipitation of about 12% and 3.4% respectively in comparison with observations of

the period 2071-2099. It is noteworthy to state that there was no evidence of any

statistical downscaling exercise conducted in the study area in published literature, prior

to the present study.

5. SUMMARY AND CONCLUSIONS

The common practice in building a statistical downscaling model is to perform the

calibration and validation (development) a with some reanalysis outputs pertaining to

the past climate and then produce the catchment scale projection into future by

introducing outputs of a GCM corresponding to possible future climate. The major issue

associated with this approach is that, in the calibration and validation phases, reanalysis
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data are used as inputs to the downscaling model, while for producing projections into

future, GCM outputs are used as inputs to the model. The two sets of input data for the

downscaling model are obtained from two different sources and hence there is no

homogeneity in them. The reanalysis outputs are quality controlled and corrected

against observations and are of better quality than GCM outputs. Therefore when a

downscaling model is developed in the above manner, it tends to perform better in

calibration and validation, and its performances in future are doubtful.

Two statistical downscaling models for downscaling monthly GCM outputs to

catchment scale precipitation were developed in this research using the multi-linear

regression technique. The precipitation station located at Halls Gap post office in north

western Victoria, Australia was selected as the case study. The first downscaling model

(Model(NCEP/NCAR)) was developed following the common practice, with the

NCEP/NCAR reanalysis outputs and the outputs of HadCM3, ECHAM5, GFDL2.0 and

GFDL2.1 pertaining to future climate were applied on this model for producing the

catchment scale projections of precipitation into future. For the development of this

downscaling model, a pool of probable predictors was selected considering the past

literature and hydrology. The data for probable predictors obtained from the

NCEP/NCAR reanalysis archive and observed precipitation data were split into three

time slices; 1950-1969, 1970-1989, and 1990-2010. Then the probable predictors which

displayed the best statistically significant correlations (p ≤ 0.05) consistently with

observed precipitation in all time slices and the whole period were selected as potential

predictors, for each calendar month. Initially, the three best potential predictors which

showed the best correlations with observed precipitation over the whole period of the
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study (1950-2010) were introduced to the downscaling model and it was calibrated for

the period 1950-1989 and validated for the period 1990-2010. In the same manner, the

next best potential predictors were added to the downscaling model one at a time. This

procedure of stepwise addition of predictors was continued until the model performance

in terms of Nash-Sutcliffe efficiency in validation reaches a maximum. This way, the

best potential predictors for each calendar month were identified.

The best sets of potential predictors identified during the development of the first

downscaling model were also used in the second downscaling model. Therefore, in the

calibration (1950-1989) and validation (1990-1999) of the second downscaling model,

the stepwise addition of predictors was not practised. The second downscaling model

(Model(Ensemble)) was calibrated and validated with a set of data derived by regressing the

20th century climate experiment outputs of HadCM3, ECHAM5 and GFDL2.0

corresponding to the best potential predictors with the reanalysis outputs

(NCEP/NCAR) using the multi-linear regression technique. The outputs of these multi-

linear regression equations were called the multi-model ensemble outputs in this paper.

The same regression equations developed between the outputs of HadCM3, ECHAM5

and GFDL2.0 and outputs of NCEP/NCAR for the past climate were used to generate

the multi-model ensemble outputs which are employed as inputs to this downscaling

model for producing the projections of precipitation into future. This way, the second

downscaling model was developed and projections into future were made with a

homogeneous set of inputs to it.

Conclusions drawn from this study are:
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1. The Model(NCEP/NCAR) with the NCEP/NCAR reanalysis outputs performed well

in both calibration and validation. The Model(Ensemble) displayed relatively

limited performances in calibration and validation. The limited performances of

this model were more pronounced in its validation phase.

2. Both Model(NCEP/NCAR) and Model(Ensemble) showed a trend of under-predicting

high precipitation values and over-predicting near zero precipitation values in

their calibration and validation phases.

3. In reproducing the past observed precipitation of the period 1950-1999, with the

20th century climate experiment outputs of HadCM3, ECHAM5, GFDL2.0 and

GFDL2.1, Model(NCEP/NCAR) showed much limited performances, in comparison

with its performances when it was run with the NCEP/NCAR reanalysis outputs.

4. When Model(Ensemble) was run with the multi-model ensemble outputs, it

indicated relatively better performances in reproducing the past observed

precipitation of the period 1950-1999, in comparison with the performances of

Model(NCEP/NCAR) when it was run with the 20th century climate experiment

outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1, for the same period.

5. According to the comparison of performances of Model(NCEP/NCAR), when it was

run with NCEP/NCAR reanalysis outputs and the 20th century climate

experiment outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1, it was
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realised that there is a large mismatch between the reanalysis outputs and GCM

outputs.

6. When Model(NCEP/NCAR) was run with the 20th century climate experiment

outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1, the averages of

precipitation were over-estimated in the period 1950-1999. However,

Model(Ensemble) was able to capture the average of observed precipitation with a

better degree of accuracy in this period.

7. It was seen that following the bias-correction the average, the standard

deviation, the coefficient of variation, the minimum and the maximum of the

monthly precipitation reproduced by Model(NCEP/NCAR) with the 20th century

climate experiment outputs of HadCM3, ECHAM5, GFDL2.0 and GFDL2.1 and

those reproduced by Model(Ensemble) with the multi-model ensemble outputs over

the period 1950-1999, were near-perfectly corrected by the equidistant quantile

mapping technique. However still Model(Ensemble) possesses the advantage of

using homogeneous inputs to it during its calibration, validation and future

projection phases, unlike its counterpart Model(NCEP/NCAR). Also the methodology

used in the development of Model(Ensemble) enables the use of outputs from

different GCMs to produce a single point scale precipitation projection into

future.

8. When Model(NCEP/NCAR) was run with the outputs of HadCM3, ECHAM5,

GFDL2.0 and GFDL2.1 pertaining to the A2 and B1 greenhouse gas emission
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scenarios, it tended to produce a wide mix of results (increases and decreases)

for the average of the precipitation corresponding to the future period 2000-

2099, in comparison with that of observed precipitation of the period 1950-1999.

When Model(Ensemble) was run with the multi-model ensemble outputs for the

same period, it showed an increase in the average of precipitation in summer,

autumn and winter in future, in comparison with that of observed precipitation

of period 1950-1999. It was realised that the average of precipitation projected

into future is dependent on the source of inputs to the downscaling model.

9. When Model(NCEP/NCAR) was run with the outputs of HadCM3, ECHAM5,

GFDL2.0 and GFDL2.1, and when Model(Ensemble) was run with multi-model

ensemble outputs, for both A2 and B1 emission scenarios, a rise in the

magnitude of the maximum monthly precipitation was seen, in spring. It was

concluded that, in future, during spring, there is greater likelihood for the

magnitude of the maximum monthly precipitation to increase.

10. According to the precipitation projection produced by Model(NCEP/NCAR) and

Model(Ensemble) into the future period 2000-2099, it was seen that the percentage

of months with zero precipitation is unlikely to decrease in autumn, winter and

spring.

11. In the majority of seasons, the average projections obtained from the outputs of

Model(NCEP/NCAR) when it was run with the outputs of HadCM3, ECHAM5 and

GFDL2.0 and the projections produced by Model(Ensemble) when it was run with
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the multi-model ensemble outputs showed similar trends (increase/decrease) in

the standard deviation, the monthly maximum precipitation and the percentage

of months with zero precipitation, over the period 2000-2099.
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Figure 3 Observed and Model(NCEP/NCAR) reproduced monthly precipitation (1950 to 2010) 
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Figure 4 Scatter plots of observed and Model(NCEP/NCAR) reproduced monthly precipitation for 
calibration (1950-1989) and validation (1990-2010) 
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Figure 5 Observed and Model(Ensemble) reproduced monthly precipitation (1950 to 1999) 
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Figure 6 Scatter plots of observed and Model(Ensemble) reproduced monthly precipitation for 
calibration (1950-1989) and validation (1990-1999) 
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Figure 7 Precipitation reproduced by Model(NCEP/NCAR) and Model(Ensemble) for period 1950-
1999 

 
 
 



Table i Best sets of potential predictors for each calendar month

Month Potential variables used in the models with grid locations
January Surface precipitation rate {(3,3),(4,4)}

1000hPa specific humidity {(3,3),(3,4),(4,4)}
850hPa meridional wind {(2,6),(3,5),(3,6)}
850hPa relative humidity {(1,2)}
2m specific humidity {(3,3),(3,4)}

February Surface precipitation rate {(3,4),(4,4),(4,5)}

March Surface precipitation rate {(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(4,6)}

April 850hPa relative humidity {(4,3),(4,4)}
Surface precipitation rate {(4,3)}

May Surface precipitation rate {(4,4),(5,5)}
850hPa geopotential height {(4,3)}

June Surface precipitation rate {(3,2),(3,3),(4,2),(4,3),(4,4),(4,5)}
Mean sea level pressure {(4,3),(5,3)}
850hPa zonal wind {(2,4)}
Surface pressure{(4,3),(5,3),(5,4)}

July 850hPa zonal wind {(1,3),(1,4)}
850hPa geopotential height {(4,3),(4,4),(4,5)}

August Surface precipitation rate {(4,3),(5,4),(5,5)}

September Surface precipitation rate {(2,1),(2,2),(3,2),(3,3),(3,5),(4,2),(4,3),(4,4),(4,5)}
850hPa relative humidity {(3,3)}
700hPa relative humidity {(3,4)}

October Surface precipitation rate {(3,2),(4,2),(4,3),(4,4)}
850hPa relative humidity {(4,3)}
700hPa geopotential height {(1,1)}

November 850hPa relative humidity {(3,2),(3,3)}
Surface precipitation rate {(4,3),(4,5)}

December Surface precipitation rate {(2,1),(3,2),(4,3),(4,4),(5,5)}
850hPa relative humidity {(3,2)}

hPa = Atmospheric pressure in hectopascal; and the locations are given within brackets (see Figure 1)

Table ii Performances of the two downscaling models in calibration and validation

Statistic

Calibration (1950-1989) Validation (1990-2010) /(1990-1999)*

Observations Model(NCEP/NCAR) Model(Ensemble)

Observations
Model(NCEP/NCAR) Model(Ensemble)1990-

2010
1990-
1999

Avg 81.8 82.0 81.1 73.3 81.8 81.0 90.7
Std 61.7 53.2 42.2 56.9 64.3 51.9 50.9
Cv 0.75 0.65 0.52 0.78 0.79 0.64 0.56
NSE 0.74 0.47 0.70 -0.08
SANS 0.66 0.30 0.61 -0.55
R2 0.74 0.47 0.72 0.13
Avg = average of monthly precipitation in mm month-1, Std = standard deviation of monthly precipitation in mm month-1, Cv

= coefficient of variation, SANS = Seasonally Adjusted Nash Sutcliffe efficiency, NSE = Nash Sutcliffe efficiency, R2 =
coefficient of determination, *Note: bold italicised values in the table refer to period 1990-1999.



Table iii Seasonal performances of the two downscaling models

Model Statistic
Calibration (1950-1989) Validation (1990-2010)/(1990-1999)*

Season Season
Summer Autumn Winter Spring Summer Autumn Winter Spring

Observed
Avg

40.7 73.7 125.1 87.7 42.9/(44.3) 54.1/(57.0) 119.4/(136.1) 78.3/(89.8)
Model(NCEP/NCAR) 40.7 73.7 125.1 87.7 49.2 57.8 132.5 85.1
Model(Ensemble) 40.7 73.7 125.1 87.7 (41.1) (83.6) (137.9) (100.3)

Observed
Std

33.7 58.8 64.5 53.5 41.0/(46.8) 43.1/(46.5) 61.2/(66.3) 48.4/(55.1)
Model(NCEP/NCAR) 26.0 46.6 54.1 43.9 29.8 33.1 54.1 41.7
Model(Ensemble) 15.2 36.8 27.9 33.3 (17.1) (50.5) (27.7) (44.8)

Observed
Cv

0.83 0.80 0.52 0.61 0.96/(1.06) 0.80/(0.82) 0.51/(0.49) 0.62/(0.61)
Model(NCEP/NCAR) 0.64 0.63 0.43 0.50 0.61 0.57 0.41 0.49
Model(Ensemble) 0.37 0.50 0.22 0.38 (0.42) (0.60) (0.20) (0.45)

Model(NCEP/NCAR) NSE
0.60 0.63 0.70 0.67 0.42 0.75 0.58 0.64

Model(Ensemble) 0.20 0.39 0.19 0.39 (-0.04) (-1.27) (-0.28) (-0.81)

Model(NCEP/NCAR) R2 0.60 0.63 0.70 0.67 0.45 0.71 0.63 0.65
Model(Ensemble) 0.20 0.39 0.19 0.39 (0.02) (0.01) (0.01) (0.00)

Avg = average of monthly precipitation in mm month-1, Std = standard deviation of monthly precipitation in mm month-1, Cv

= coefficient of variation, NSE = Nash Sutcliffe efficiency, R2 = coefficient of determination, *Note: bold italicised values in
brackets in the table refer to period 1990-1999.

Table iv Performances of Model(NCEP/NCAR) and Model(Ensemble) with inputs form different
sources (1950-1999)

Statistic Observed
(1950-1999)

Model(NCEP/NCAR) Model(Ensemble)

NCEP/NCAR HadCM3 ECHAM5 GFDL2.0 GFDL2.1 Ensemble

Avg 81.8 83.1 117.4 139.1 102.3 104.2 83.6

Std 62.1 53.8 61.8 112.1 65.7 49.8 44.2

Cv 0.76 0.65 0.52 0.81 0.64 0.48 0.53

Min 0.0 0.0 0.0 6.9 0.0 15.9 4.1

Max 345.4 301.9 358.1 597.7 330.6 289.4 227.7

R2 N/A 0.75 0.12 0.19 0.15 0.03 0.36

NSE N/A 0.75 -0.62 -2.54 -0.40 -0.48 0.35

Avg = average of monthly precipitation in mm month-1, Std = standard deviation of monthly precipitation in mm month-1, Cv

= coefficient of variation, Min = minimum precipitation in mm month-1, Max = maximum precipitation in mm month-1, R2 =
coefficient of determination. Bold text refers to the statistics of observed precipitation for the period 1950-1999, Italicised
text refers to the performances of Model(NCEP/NCAR) with inputs from different sources, N/A = not applicable



Table v Performances of Model(NCEP/NCAR) and Model(Ensemble) with inputs form different
sources (1950-1999), before and after bias-correction

Statistic Observed
Model(NCEP/NCAR) Model(Ensemble)

HadCM3 ECHAM5 GFDL2.0 GFDL2.1 Average Ensemble

Avg 81.8 81.8/(117.4) 81.8/(139.1) 81.8/(102.3) 81.8/(104.2) 81.8/(119.6) 81.8/(83.6)

Std 62.1 62.2/(61.8) 62.2/(112.1) 62.2/(65.7) 62.2/(49.8) 45.9/(64.8) 62.2/(44.2)

Cv 0.76 0.76/(0.52) 0.76/(0.81) 0.76/(0.64) 0.76/(0.48) 0.56/(0.54) 0.76/(0.53)

Min 0.0 0.0/(0.0) 0.0/(6.9) 0.0/(0.0) 0.0/(15.9) 2.0/(16.4) 0.0/(4.1)

Max 345.4 345.4/(358.1) 345.4/(597.7) 345.4/(330.6) 345.4/(289.4) 260.0/(304.6) 345.4/(227.7)

R2 N/A 0.11/(0.12) 0.12/(0.19) 0.08/(0.15) 0.11/(0.03) 0.19/(0.24) 0.27/(0.36)

NSE N/A -0.34/(-0.62) -0.29/(-2.54) -0.43/(-0.40) -0.33/(-0.48) 0.10/(-0.43) 0.04/(0.35)

Avg = average of monthly precipitation in mm month-1, Std = standard deviation of monthly precipitation in mm month-1, Cv

= coefficient of variation, Min = minimum precipitation in mm month-1, Max = maximum precipitation in mm month-1, R2 =
coefficient of determination. Italicised text in brackets refers to the statistics of precipitation reproduced by downscaling
models prior to bias-correction, Bold italicised text refers to the statistics of precipitation reproduced by downscaling models
following bias-correction, N/A = not applicable.

Table vi Performances of Model(NCEP/NCAR) with HadCM3 outputs pertaining to the COMMIT
GHG emission scenario (2000-2099), before and after bias-correction

Statistic Observed
(1950-1999)

Model(NCEP/NCAR) with HadCM3
COMMIT outputs (2000-2009)

Before bias-
correction

After bias-
correction

Avg 81.8 122.6 87.5

Std 62.1 67.9 69.8

Cv 0.76 0.55 0.79

Min 0.0 1.9 0.0

Max 345.4 387.5 424.1

Avg = average of monthly precipitation in mm month-1, Std = standard deviation of monthly precipitation in mm month-1, Cv

= coefficient of variation, Min = minimum precipitation in mm month-1, Max = maximum precipitation in mm month-1, Bold
text refers to the statistics of observed precipitation of the period 1950-1999, Italicised text refers to the statistics of
precipitation reproduced by downscaling model with the HadCM3 COMMIT outputs for the period 2000-2099 prior to the
bias-correction, Italicised bold text refers to the statistics of precipitation reproduced by downscaling model with the
HadCM3 COMMIT outputs for the period 2000-2099 after the bias-correction.



Table vii Percentage changes of statistics of bias-corrected precipitation of Model(NCEP/NCAR)

Model(Ensemble) and for period 2000-2099, with respect to statistics of observed precipitation of
period 1950-1999

Average of monthly precipitation, standard deviation of monthly precipitation and monthly maximum precipitation are in
mm, MME = multi-model ensemble outputs, A2 = high emission scenario, B1 = low emission scenario, ↑ = percentage
increase in 2000-2099 with respect to observations of period 1950-1999, ↓ = percentage decrease in 2000-2099 with respect
to observations of period 1950-1999 (in bold), = No change in percentage in 2000-2099 with respect to observations of
period 1950-1999 (in italics), Average of Model(NCEP/NCAR) = average time series computed from the outputs of
Model(NCEP/NCAR) when it was run with the outputs of HadCM3, ECHAM5 and GFDL2.0.

Statistic Downscaling
Model

Input
source

Summer Autumn Winter Spring

A2 B1 A2 B1 A2 B1 A2 B1

Average of
precipitation

Model(NCEP/NCAR)

HadCM3 -19% ↓ -15% ↓ +9% ↑ -4% ↓ +4% ↑ +7% ↑ -15% ↓ -19% ↓

ECHAM5 +14% ↑ +9% ↑ 0% = +1% ↑ -14% ↓ -8% ↓ -39% ↓ -30% ↓

GFDL2.0 +5% ↑ -2% ↓ -48% ↓ -42% ↓ 0% = +8% ↑ +3% ↑ +15% ↑

GFDL2.1 -11% ↓ -15% ↓ -28% ↓ -23% ↓ +3% ↑ +10% ↑ -12% ↓ +2% ↑

Model(Ensemble) MME +10% ↑ +6% ↑ +2% ↑ +1% ↑ +2% ↑ +3% ↑ +1% ↑ -1% ↓

Average of Model(NCEP/NCAR) 0% = -3% ↓ -13% ↓ -15% ↓ -3% ↓ +2% ↑ -17% ↓ -11% ↓

Standard
deviation of
precipitation

Model(NCEP/NCAR)

HadCM3 +20% ↑ +18% ↑ +15% ↑ +18% ↑ +11% ↑ +13% ↑ +29% ↑ +18% ↑

ECHAM5 +15% ↑ +18% ↑ 0% = +8% ↑ +11% ↑ +9% ↑ +1% ↑ -4% ↓

GFDL2.0 +18% ↑ +6% ↑ -14% ↓ -3% ↓ +17% ↑ +18% ↑ +27% ↑ +32% ↑

GFDL2.1 0% = -17% ↓ -2% ↓ -6% ↓ +11% ↑ +7% ↑ +1% ↑ +21% ↑

Model(Ensemble) MME -15% ↓ -16% ↓ -20% ↓ -19% ↓ -16% ↓ -15% ↓ -23% ↓ -26% ↓

Average of Model(NCEP/NCAR) -32% ↓ -28% ↓ -35% ↓ -25% ↓ -32% ↓ -35% ↓ -27% ↓ -30% ↓

Monthly
maximum
precipitation

Model(NCEP/NCAR)

HadCM3 +96% ↑ +31% ↑ +23% ↑ +21% ↑ +53% ↑ +43% ↑ +41% ↑ +17% ↑

ECHAM5 +16% ↑ +43% ↑ +12% ↑ +22% ↑ +40% ↑ +24% ↑ +9% ↑ +11% ↑

GFDL2.0 +35% ↑ +11% ↑ +10% ↑ +10% ↑ +39% ↑ +41% ↑ +30% ↑ +62% ↑

GFDL2.1 +30% ↑ -1% ↓ +6%↑ -10% ↓ +14% ↑ +12% ↑ +17% ↑ +35% ↑

Model(Ensemble) MME -10% ↓ -10% ↓ -5% ↓ -6% ↓ -3% ↓ -2% ↓ +11% ↑ +6% ↑

Average of Model(NCEP/NCAR) -26% ↓ -4% ↓ -44% ↓ -12% ↓ -14% ↓ -22% ↓ -29% ↓ -22% ↓

Months with
zero precipitation

Model(NCEP/NCAR)

HadCM3 +16% ↑ +20% ↑ +6% ↑ +10% ↑ +1% ↑ 0% = +8% ↑ +5% ↑

ECHAM5 0% = -3% ↓ +1% ↑ +1% ↑ +1% ↑ +2% ↑ +17% ↑ +3% ↑

GFDL2.0 +2% ↑ +1% ↑ +27% ↑ +28% ↑ 0% = 0% = +2% ↑ +1% ↑

GFDL2.1 -2% ↓ -1% ↓ +15% ↑ +14% ↑ +1% ↑ +1% ↑ +2% ↑ +1% ↑

Model(Ensemble) MME -4% ↓ -4% ↓ 0% = 0% = 0% = 0% = 0% = 0% =

Average of Model(NCEP/NCAR) -4% ↓ -4% ↓ 0% = 0% = 0% = 0% = 0% = 0% =

Months with
above average
precipitation

Model(NCEP/NCAR)

HadCM3 -8% ↓ -2% ↓ +1% ↑ 0% = -1% ↓ +1% ↑ -4% ↓ -5% ↓

ECHAM5 -5% ↓ -5% ↓ -1% ↓ 0% = -2% ↓ +2% ↑ -3% ↓ -6% ↓

GFDL2.0 -6% ↓ -4% ↓ -5% ↓ -6% ↓ +2% ↑ +2% ↑ -4% ↓ -2% ↓

GFDL2.1 -3% ↓ 0% = -7% ↓ +1% ↑ 0% = +5% ↑ -3% ↓ -2% ↓

Model(Ensemble) MME +3% ↑ -5% ↓ +2% ↑ +2% ↑ -4% ↓ -1% ↓ -3% ↓ -2% ↓

Average of Model(NCEP/NCAR) +4% ↑ -1% ↓ +3% ↑ +4% ↑ +1% ↑ +2% ↑ 0% = +1% ↑


