636 research outputs found

    Aegilops tauschii: A valuable source for karnal bunt resistance

    Get PDF
    Item does not contain fulltex

    Evaluation and utilization of Aegilops germplasm for biofortification of wheat for high grain iron and zinc content

    Get PDF
    Contains fulltext : 135415.pdf (publisher's version ) (Closed access)24 p

    High-resolution radiation hybrid mapping in wheat: an essential tool for the construction of the wheat physical maps

    Get PDF
    ArtigoO poema épico da época moderna nasce na literatura portuguesa como oceânico logo a partir da sua gestação. Este estudo enquadra a sua génese num contexto europeu.Università di Roma, La Sapienz

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes

    Get PDF
    The aim of this study was to assess the potential breeding value of goatgrass-rye amphiploids, which we are using as a “bridge” in a transfer of Aegilops chromatin (containing, e.g. leaf rust resistance genes) into triticale. We analysed the chromosomal constitution (by genomic in situ hybridisation, GISH), fertility (by pollen viability tests) and the presence of leaf rust and eyespot resistance genes (by molecular and endopeptidase assays) in a collection of 6× and 4× amphiploids originating from crosses between five Aegilops species and Secale cereale. In the five hexaploid amphiploids Aegilops kotschyi × Secale cereale (genome UUSSRR), Ae. variabilis × S. cereale (UUSSRR), Ae. biuncialis × S. cereale (UUMMRR; two lines) and Ae. ovata × S. cereale (UUMMRR), 28 Aegilops chromosomes were recognised, while in the Ae. tauschii × S. cereale amphiploid (4×; DDRR), only 14 such chromosomes were identified. In the materials, the number of rye chromosomes varied from 14 to 16. In one line of Ae. ovata × S. cereale, the U-R translocation was found. Pollen viability varied from 24.4 to 75.4%. The leaf rust resistance genes Lr22, Lr39 and Lr41 were identified in Ae. tauschii and the 4× amphiploid Ae. tauschii × S. cereale. For the first time, the leaf rust resistance gene Lr37 was found in Ae. kotschyi, Ae. ovata, Ae. biuncialis and amphiploids derived from those parental species. No eyespot resistance gene Pch1 was found in the amphiploids
    corecore