34 research outputs found

    Caracterização de materiais soldados com base na medição de perfis de condutividade eléctrica

    Get PDF
    Trabalhos recentes têm demonstrado que a medição de perfis de condutividade eléctrica é uma técnica eficaz, rápida e não destrutiva para a caracterização de materiais metálicos ligados por soldadura por fusão ou no estado sólido. Os resultados referentes às ligas de alumínio mostram que existe uma estreita correlação entre os perfis de condutividade eléctrica e os perfis de dureza, sendo os primeiros determinados sobretudo pelo tamanho de grão. Relativamente às ligas de aço, verifica-se que os perfis de condutividade eléctrica também permitem identificar as diferentes zonas termicamente afectadas devido aos processos de soldadura por fusão, as quais são geralmente descritas por zona fundida (ZF) e zona termicamente afectada (ZTA), sendo a sua extensão dependente sobretudo da Entrega Térmica (ET). Contudo, em algumas ligas, as características metalúrgicas que controlam as variações de condutividade eléctrica não estão devidamente descritas ou compreendidas. Nesse sentido, o objectivo do presente trabalho foi caracterizar os perfis de condutividade eléctrica em diferentes ligas de aço soldadas por fusão, identificando os principais aspectos metalúrgicos que lhes estão subjacentes. Foram realizados cordões de soldadura SER e TIG de aços P11, P22 e não ligado com diferentes parâmetros de soldadura. Os perfis de condutividade eléctrica foram medidos com sondas de correntes induzidas e com sondas de quatro pontos a diferentes profundidades, tendo sido comparados com os respectivos perfis de microdureza Vickers. Os resultados mostram que existe uma boa correlação entre a condutividade e a dureza, sendo que a condutividade é essencialmente determinada pelo tamanho de grão, e pela morfologia da fase ferrítica. A ferrite Witmanstatten facilita a passagem de corrente eléctrica ao contrário da ferrite poligonal que constitui um obstáculo à passagem de electrões. Pode confirmar-se que a medição dos perfis de condutividade é uma técnica com elevado potencial para complementar, ou em alguns casos substituir, a medição de durezas em ligas de aço soldadas por fusão

    Prolonged Quadriceps Activity Following Imposed Hip Extension: A Neurophysiological Mechanism for Stiff-Knee Gait?

    Get PDF
    The biomechanical characteristics of stiff knee gait following neurological injury include decreased knee flexion velocity at toe-off, which may be due to exaggerated quadriceps activity. The neuromuscular mechanism underlying this abnormal activity is unclear, although hyperexcitable heteronymous reflexes may be a source of impaired coordination. The present study examines the contribution of reflex activity from hip flexors on knee extensors following stroke and its association with reduced swing-phase knee flexion during walking. Twelve individuals poststroke and six control subjects were positioned in supine on a Biodex dynamometer with the ankle and knee held in a static position. Isolated hip extension movements were imposed at 60, 90, and 120°/s through a 50° excursion to end-range hip extension. Reflexive responses of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) were quantified during and after the imposed hip rotation. Gait analysis was also performed for all subjects in the stroke group. In subjects with stroke, imposed hip extension evoked a brief reflexive response in the quadriceps, followed by a heightened level of sustained activity. The initial response was velocity dependent and was larger in the stroke group than in the control group. In contrast, the prolonged response was not velocity dependent, was significantly greater in the VL and RF in subjects with stroke, and, importantly, was correlated to decreased swing-phase knee flexion. Hyperexcitable heteronymous connections from hip flexors to knee extensors appear to elicit prolonged quadriceps activity and may contribute to altered swing-phase knee kinematics following stroke

    Active robotic training improves locomotor function in a stroke survivor

    Full text link
    Abstract Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training) using a powered gait orthosis (Lokomat) in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week). The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training). Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs). Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE) of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.http://deepblue.lib.umich.edu/bitstream/2027.42/112853/1/12984_2011_Article_375.pd

    Biomechanical impairments and gait adaptations post-stroke: Multi-factorial associations

    Get PDF
    Understanding the potential causes of both reduced gait speed and compensatory frontal plane kinematics during walking in individuals post-stroke may be useful in developing effective rehabilitation strategies. Multiple linear regression analysis was used to select the combination of paretic limb impairments (frontal and sagittal plane hip strength, sagittal plane knee and ankle strength, and multi-joint knee/hip torque coupling) which best estimate gait speed and compensatory pelvic obliquity velocities at toeoff. Compensatory behaviors were defined as deviations from control subjects’ values. The gait speed model (n = 18; p = 0.003) revealed that greater hip abduction strength and multi-joint coupling of sagittal plane knee and frontal plane hip torques were associated with decreased velocity; however, gait speed was positively associated with paretic hip extension strength. Multi-joint coupling was the most influential predictor of gait speed. The second model (n = 15; p < 0.001) revealed that multi-joint coupling was associated with increased compensatory pelvic movement at toeoff; while hip extension and flexion and knee flexion strength were associated with reduced frontal plane pelvic compensations. In this case, hip extension strength had the greatest influence on pelvic behavior. The analyses revealed that different yet overlapping sets of single joint strength and multi-joint coupling measures were associated with gait speed and compensatory pelvic behavior during walking post-stroke. These findings provide insight regarding the potential impact of targeted rehabilitation paradigms on improving speed and compensatory kinematics following stroke

    Downregulating Aberrant Motor Evoked Potential Synergies of the Lower Extremity Post Stroke during TMS of the Contralesional Hemisphere

    No full text
    Background Growing evidence demonstrates unique synergistic signatures in the lower limb (LL) post-stroke, with specific across-plane and across-joint representations. While the inhibitory role of the ipsilateral hemisphere in the upper limb (UL) has been widely reported, examination of the contralesional hemisphere (CON-H) in modulating LL expressions of synergies following stroke is lacking. Objective We hypothesize that stimulation of lesioned and contralesional motor cortices will differentially regulate paretic LL motor outflow. We propose a novel TMS paradigm to identify synergistic motor evoked potential (MEP) patterns across multiple muscles. Methods Amplitude and background activation matched adductor MEPs were elicited using single pulse TMS of L-H and CON-H (control ipsilateral) during an adductor torque matching task from 11 stroke and 10 control participants. Associated MEPs of key synergistic muscles were simultaneously observed. Results By quantifying CON-H/L-H MEP ratios, we characterized a significant targeted inhibition of aberrant MEP coupling between ADD and VM (p = 0.0078) and VL (p = 0.047) exclusive to the stroke group (p = 0.028) that was muscle dependent (p = 0.039). We find TA inhibition in both groups following ipsilateral hemisphere stimulation (p = 0.0014; p = 0.015). Conclusion We argue that ipsilaterally mediated attenuation of abnormal synergistic activations post stroke may reflect an adaptive intracortical inhibition. The predominance of sub 3ms interhemispheric MEP latency differences implicates LL ipsilateral corticomotor projections. These findings provide insight into the association between CON-H reorganization and post-stroke LL recovery. While a prevailing view of driving L-H disinhibition for UL recovery seems expedient, presuming analogous LL neuromodulation may require further examination for rehabilitation. This study provides a step toward this goal

    A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.

    Get PDF
    Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept demonstration that combining robotic gait training with a motor learning task enhances active participation

    Active robotic training improves locomotor function in a stroke survivor

    No full text
    Abstract Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training) using a powered gait orthosis (Lokomat) in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week). The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training). Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs). Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE) of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.</p

    Identifying spinal tracts transmitting distant effects of trans-spinal magnetic stimulation

    No full text
    Estimating the state of tract-specific inputs to spinal motoneurons is critical to understanding movement deficits induced by neurological injury and potential pathways to recovery but remains challenging in humans. In this study, we explored the capability of trans-spinal magnetic stimulation (TSMS) to modulate distal reflex circuits in young adults. TSMS was applied over the thoracic spine to condition soleus H-reflexes involving sacral-level motoneurons. Three TSMS intensities below the motor threshold were applied at interstimulus intervals (ISIs) between 2 and 20 ms relative to peripheral nerve stimulation (PNS). Although low-intensity TSMS yielded no changes in H-reflexes across ISIs, the two higher stimulus intensities yielded two phases of H-reflex inhibition: a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. H-reflex inhibition at 2-ms ISI was uniquely dependent on TSMS intensity. To identify the candidate neural pathways contributing to H-reflex suppression, we constructed a tract-specific conduction time estimation model. Based upon our model, H-reflex inhibition at 11- to 12-ms ISIs is likely a manifestation of orthodromic transmission along the lateral reticulospinal tract. In contrast, the inhibition at 2-ms ISI likely reflects orthodromic transmission along sensory fibers with activation reaching the brain, before descending along motor tracts. Multiple pathways may contribute to H-reflex modulation between 4- and 9-ms ISIs, orthodromic transmission along sensorimotor tracts, and antidromic transmission of multiple motor tracts. Our findings suggest that noninvasive TSMS can influence motoneuron excitability at distal segments and that the contribution of specific tracts to motoneuron excitability may be distinguishable based on conduction velocities.NEW & NOTEWORTHY This study explored the capability of trans-spinal magnetic stimulation (TSMS) over the thoracic spine to modulate distal reflex circuits, H-reflexes involving sacral-level motoneurons, in young adults. TSMS induced two inhibition phases of H-reflex across interstimulus intervals (ISIs): a relatively long-lasting period at 2- to 9-ms ISIs, and a short phase at 11- to 12-ms ISIs. An estimated probability model constructed from tract-specific conduction velocities allowed the identification of potential spinal tracts contributing to the changes in motoneuron excitability
    corecore