
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Biomedical Engineering Faculty Research and 
Publications Biomedical Engineering, Department of 

12-2007 

Prolonged Quadriceps Activity Following Imposed Hip Extension: Prolonged Quadriceps Activity Following Imposed Hip Extension: 

A Neurophysiological Mechanism for Stiff-Knee Gait? A Neurophysiological Mechanism for Stiff-Knee Gait? 

Michael D. Lewek 
Rehabilitation Institute of Chicago 

T. George Hornby 
Rehabilitation Institute of Chicago 

Yasin Y. Dhaher 
Northwestern University 

Brian D. Schmit 
Marquette University, brian.schmit@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/bioengin_fac 

 Part of the Biomedical Engineering and Bioengineering Commons 

Recommended Citation Recommended Citation 
Lewek, Michael D.; Hornby, T. George; Dhaher, Yasin Y.; and Schmit, Brian D., "Prolonged Quadriceps 
Activity Following Imposed Hip Extension: A Neurophysiological Mechanism for Stiff-Knee Gait?" (2007). 
Biomedical Engineering Faculty Research and Publications. 264. 
https://epublications.marquette.edu/bioengin_fac/264 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213076265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin_fac
https://epublications.marquette.edu/bioengin
https://epublications.marquette.edu/bioengin_fac?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/bioengin_fac/264?utm_source=epublications.marquette.edu%2Fbioengin_fac%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 

 

Biomedical Engineering Faculty Research and Publications/College of 

Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 

published version may be accessed by following the link in the citation below. 

 

Journal of Neurophysiology, Vol. 98, No. 6 (December 2007): 3153–3162. DOI. This article is © 

American Physiological Society and permission has been granted for this version to appear in e-

Publications@Marquette. American Physiological Society does not grant permission for this article to 

be further copied/distributed or hosted elsewhere without the express permission from American 

Physiological Society.  

 

Prolonged Quadriceps Activity Following 
Imposed Hip Extension: A Neurophysiological 
Mechanism for Stiff-Knee Gait? 
 

Michael D. Lewek 
Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Northwestern University, 
Chicago, Illinois 

T. George Hornby 
Sensory Motor Performance Program, Rehabilitation Institute of Chicago; Department of Physical 
Therapy, University of Illinois, Chicago; Northwestern University, Chicago, Illinois 

Yasin Y. Dhaher 
Sensory Motor Performance Program, Rehabilitation Institute of Chicago; Department of Biomedical 
Engineering, Northwestern University, Chicago, Illinois 

Brian D. Schmit 
Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Northwestern University, 
Chicago, Illinois 

https://doi.org/10.1152/jn.00726.2007
http://epublications.marquette.edu/
http://epublications.marquette.edu/


Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 
 

Abstract 
The biomechanical characteristics of stiff knee gait following neurological injury include decreased knee flexion 

velocity at toe-off, which may be due to exaggerated quadriceps activity. The neuromuscular mechanism 

underlying this abnormal activity is unclear, although hyperexcitable heteronymous reflexes may be a source of 

impaired coordination. The present study examines the contribution of reflex activity from hip flexors on knee 

extensors following stroke and its association with reduced swing-phase knee flexion during walking. Twelve 

individuals poststroke and six control subjects were positioned in supine on a Biodex dynamometer with the 

ankle and knee held in a static position. Isolated hip extension movements were imposed at 60, 90, and 120°/s 

through a 50° excursion to end-range hip extension. Reflexive responses of the rectus femoris (RF), vastus 

lateralis (VL), and vastus medialis (VM) were quantified during and after the imposed hip rotation. Gait analysis 

was also performed for all subjects in the stroke group. In subjects with stroke, imposed hip extension evoked a 

brief reflexive response in the quadriceps, followed by a heightened level of sustained activity. The initial 

response was velocity dependent and was larger in the stroke group than in the control group. In contrast, the 

prolonged response was not velocity dependent, was significantly greater in the VL and RF in subjects with 

stroke, and, importantly, was correlated to decreased swing-phase knee flexion. Hyperexcitable heteronymous 

connections from hip flexors to knee extensors appear to elicit prolonged quadriceps activity and may 

contribute to altered swing-phase knee kinematics following stroke. 

INTRODUCTION 
Following neurological injury, such as stroke, muscle activity patterns during walking are often compromised, 

resulting in decreased gait speed, postural instability, reduced energy efficiency, and kinematic abnormalities. 

Substantial efforts have thus been made to discern the biomechanical and neuromuscular characteristics of 

abnormal walking patterns after neurological injury. Biomechanically, “spastic paretic stiff-legged gait” has been 

attributed to decreased knee flexion velocity at toe-off (Anderson et al. 2004; Goldberg et al. 2003). Knee flexion 

velocity typically increases rapidly during the period of double support, suggesting that events occurring during 

this period may be particularly critical to achieving sufficient swing-phase knee flexion. Conversely, 

inappropriate vasti activity during the double support period is purported to be the most powerful antagonist to 

knee flexion velocity in people with neurologic injury (Goldberg et al. 2004); yet, despite the evidence linking 

inappropriate knee extensor activity with swing-phase knee kinematics (Kerrigan et al. 1991), the neuromuscular 

mechanism responsible for generating abnormal quadriceps activity is not well understood. 

The double support period of the leg initially in stance includes peak hip extension, while the knee begins flexing 

in preparation for toe-off. Therefore one explanation for the presence of elevated inappropriate quadriceps 

activity after stroke is the misinterpretation at the spinal level of sensory (e.g., group I and group II afferents) 

information originating from the hip proprioceptors, resulting in the production of spastic knee extensor activity. 

Sensory information from hip proprioceptors is known to be important in modulating stepping patterns after 

neurological insult (Grillner and Rossignol 1978; Hiebert et al. 1996). The fact that peak hip extension occurs 

during double support suggests that the stretch of the hip flexors may contribute to the presence of 

inappropriate uniarticular vasti activity. Multijoint reflex responses involving excitation of knee extensors have 

been reported previously in people with stroke. For example, common peroneal stimulation at group I and 

group II strength elicits elevated early and late facilitation of quadriceps H-reflexes in patients with poststroke 

hemiplegia as compared with unimpaired subjects (Marque et al. 2001; Maupas et al. 2004). This divergent 

excitation to muscles crossing different joints may result from increased excitability of propriospinal neurons 



following stroke (Mazevet et al. 2003). Despite these findings, the functional consequence of exaggerated 

multijoint reflexes in the lower extremity following stroke is not well described. 

In individuals with spinal cord injury (SCI), exaggerated multijoint, heteronymous reflex responses are well 

known to contribute to abnormal muscle activation patterns. Specifically, lengthening the hip flexor muscles by 

passive hip extension movements elicits long-lasting hip flexor activity, with concomitant knee and ankle 

extensor activity (Schmit and Benz 2002; Steldt and Schmit 2004), which is consistent with the clinical 

description of an extensor spasm (Benz et al. 2005; Kuhn 1950; Little et al. 1989). Such data are in direct contrast 

to the well-established role of hip position afferents for facilitating limb flexion during terminal stance phase of 

locomotion in spinal or decerebrate cats (Grillner and Rossignol 1978; Hiebert et al. 1996), or infants during 

treadmill stepping (Pang and Yang 2000). The combined findings suggest a reorganization of heteronymous 

reflex function after neurological injury, which may increase knee extensor activity in response to hip extension. 

During gait, this reorganization of multijoint reflex coupling between hip extension (as observed during terminal 

stance) and enhanced knee extensor activity may contribute to the commonly observed deficits in “stiff-legged 

gait.” 

The presence of heteronymous stretch reflex activity from the hip flexors to knee extensors in subjects after 

stroke has not been demonstrated previously. Further, the contribution of such heteronymous stretch reflex 

activity to abnormal gait kinematics in subjects with neurological injury has not been established. The purpose of 

this study was to examine the effect of an isolated imposed hip extension movement on knee extensor muscle 

activity in individuals with stroke and the potential relation of these heteronymous reflexes to kinematic 

abnormalities during gait. We hypothesized that the presence of increased quadriceps activity during and/or 

after an imposed hip extension movement is correlated to the presence of stiff knee gait (i.e., reduced knee 

flexion in swing). 

METHODS 

Subjects 
Twelve subjects (eight females, four males between 28 and 75 yr old, mean = 52, SD = 11 yr old) with chronic 

poststroke hemiparesis (>6 mo) were recruited for testing (Stroke group; see Table 1). Six of these subjects 

exhibited right-side hemiparesis. All stroke subjects demonstrated clinical symptoms consistent with an ischemic 

or hemorrhagic unilateral brain lesion resulting in sensory motor dysfunction ≥6 mo before testing. Subjects 

were excluded if they had a history of severe osteoporosis, cardiorespiratory diseases (e.g., cardiac arrhythmia, 

uncontrolled hypertension, chronic emphysema), unhealed decubiti, or significant residual cognitive or 

communication deficits that could impede the understanding of the purpose and procedures of the study. The 

individuals with stroke exhibited a variety of walking patterns yielding swing-phase knee flexion values that 

ranged from nearly “normal” to clinical stiff-knee gait. A group of six unimpaired control subjects (two females, 

four males; age = 39 ± 10 yr old) underwent identical reflex testing (Control group). All subjects were informed 

of the purpose and procedures of the study and signed informed consent forms approved by the Institutional 

Review Boards of Northwestern University before testing. 

TABLE 1. Demographics of subjects in stroke group 

Subject Age Lesion Location Time Since 

Stroke, mo 

Berg Balance 

Score 

Comfortable Gait 

Speed, m/s 

S1 52 Right hemisphere 228 53 0.55 

S2 75 Left hemisphere 54 45 0.59 

S3 40 Right hemisphere 89 53 0.70 

S4 57 Left hemisphere 27 45 0.64 



S5 56 Right hemisphere, hemorrhagic 119 55 1.18 

S6 57 Left basal ganglia 46 52 0.30 

S7 53 Left internal carotid, ischemic 235 53 0.75 

S8 48 Right MCA, ischemic 47 52 0.49 

S9 50 Left posterior insula and putamon, 

ischemic 

22 47 0.27 

S10 51 Left corona radiate and posterior 

limb of the internal capsule 

28 54 0.88 

S11 59 Right hemisphere 51 52 0.52 

S12 28 Right hemisphere, hemorrhagic 10 55 0.57 

 

Reflex testing and analysis 
Detection of the presence of hyperexcitable heteronymous stretch reflexes from the hip flexors to the 

uniarticular knee extensors was accomplished by imposing isolated hip extension movements using a Biodex 

System 3 (Biodex Medical Equipment, Shirley, NY). Evaluation of the role of passive hip movement on 

uniarticular knee extensor excitability began with the subject positioned in supine and the pelvis secured firmly 

to the table with a strap placed across the iliac crests to prevent pelvic rotation. The knee and ankle were fixed 

in a static posture by strapping the hemiparetic limb securely within a custom-designed, modifiable full-leg 

brace (Fig. 1). The leg brace was fixed to the Biodex so that the motor's axis of rotation was aligned with the 

flexion/extension axis of rotation of the hip. Proper alignment was verified visually by an absence of leg 

translation during manual movement of the leg brace, ensuring that observations of a muscle response about 

the knee were due solely to rotation at the hip. 

 
FIG. 1. Subject setup in supine. Hip is rotated into extension while the knee and ankle are held static. 

The hip was rotated through a 50° excursion from flexion to extension, ending 1–2° from maximum hip 

extension. The end range of motion was determined by the point at which the subject reported a muscle stretch 

in the upper thigh or by the tester noting a firm/muscular end-feel. All subjects denied the presence of pain or 

discomfort with the hip extension movement. The average start position for the Stroke group was 36 ± 6° of hip 

flexion, whereas the Control group began at an average of 30 ± 6° of hip flexion. The tested knee of both groups 

was fixed in about 10° of flexion and the ankle was about 15° of plantarflexion. The knee was flexed to about 10° 

to approximately match the paretic knee's position during the second double support period (before toe-off). 

Increasing knee flexion would also increase the relative tension on the RF, and perhaps not elicit a sufficient 

stretch of the uniarticular hip flexors (Van Dillen et al. 2000). The Biodex motor rotated the hip into extension at 

60, 90, and 120°/s to simulate a range of peak angular velocities observed during normal gait (Granata et al. 

2000). At the end of the imposed hip extension rotation, the limb was held in the extended position for 5 s 



before rotating back to the start (flexed) position. Electromyographic (EMG) measurement of rectus femoris 

(RF), vastus lateralis (VL), and vastus medialis (VM) muscle responses was recorded using active surface 

electrodes (DE 2.1, Delsys, Boston, MA). 

Fifteen trials were repeated at each tested velocity (i.e., 60, 90, and 120°/s) with about 1-min rest between 

trials. During the first 5 trials of each tested velocity, subjects were asked to relax as much as possible during the 

imposed movement. The final 10 trials at each velocity were performed with the subjects preactivating the hip 

flexors (including the RF) at about 5–10% of their maximum voluntary isometric contraction (MVIC) (Crago et al. 

1976). This preactivation level was maintained during the imposed hip extension movement to ensure an 

adequate stretch of the hip flexors, and subjects were instructed to relax several seconds after the end of the 

movement. 

During all trials, the hip joint position, torque, and velocity were recorded from the Biodex. Simultaneous 

collection of EMG data occurred at 1,000 Hz, following amplification (×10K) and band-pass filtering between 20 

and 450 Hz. Analysis of muscle activity was performed using custom-designed software (LabVIEW 7, National 

Instruments, Austin, TX). A linear envelope was created from the EMG data by full-wave rectifying the signals, 

and then filtering with a phase-corrected, eighth-order, low-pass Butterworth filter with a cutoff frequency of 10 

Hz. The linear envelope was normalized to the peak recorded during the MVIC collected before performing the 

reflex testing. The MVIC was performed while the subjects were seated (i.e., hip at ∼70–80° and the knee flexed 

to ∼10°), to allow for comparison of RF, VL, and VM muscle activity between groups. The normalized EMG for 

each muscle was combined into an ensemble average for the 5 relaxed trials, as well as for the 10 preactivated 

trials, at each velocity. The individual muscle responses were compared between groups for each condition (i.e., 

relaxed and preactivated). 

Gait testing and analysis 
All subjects in the Stroke group returned on a different day to undergo gait analysis to determine lower 

extremity kinematics during overground walking. Subjects did not use an ankle foot orthosis (AFO) during the 

gait testing session. As subjects walked across a 10-m walkway, the motions of the lower extremity segments 

were tracked with a passive eight-camera motion capture system (Motion Analysis, Santa Rosa, CA) collecting at 

120 Hz. Joint centers were located by 1 inch (25.4 mm), retro reflective markers affixed to the posterior sacrum 

and bilaterally over the anterior superior iliac spines (ASIS), medial and lateral femoral condyles, and medial and 

lateral malleoli. Rigid thermoplastic shells, each with three markers firmly affixed, were attached to the lateral 

aspect of the thigh and shank and covered with an elastic wrap to minimize movement between the shell and 

the bone to track the limb segments during walking. The foot was tracked by markers placed on the posterior 

heel counter of the shoe and over the second metatarsal head. Subjects walked at their self-selected velocity, 

but were asked to maintain a consistent gait velocity across trials. The marker trajectories were low-pass filtered 

at 6 Hz (EvaRT, Motion Analysis) to calculate the relative three-dimensional positions and intersegmental joint 

angles using a rigid body analysis and normalized to a stride cycle (OrthoTrak 6.2.4, Motion Analysis) (Grood and 

Suntay 1983). 

Statistical analysis 
Statistical analyses were performed with SPSS (SPSS 10.0, Chicago, IL). Outcome variables from the imposed hip 

extension movement (Fig. 2) were calculated from the ensemble average of normalized EMG linear envelopes 

(Fig. 3) and expressed relative to a baseline, identified as the average muscle activity during the 250-ms period 

immediately before hip movement initiation. We were particularly interested in 1) the phasic reflex response, 

quantified as the initial peak reflexive response of the RF, VL, and VM muscles measured during the 150-ms 

period immediately after the initiation of limb movement; and 2) the tonic or prolonged response, calculated as 

the difference in EMG magnitude between the baseline average (250 ms before hip movement) and the final 



position average in muscle activity (identified as the 250 ms immediately after termination of hip extension). 

Analyses were performed during both relaxed and preactivated conditions. Group means and SDs of muscle 

activity were compared using a two-way (group by imposed hip velocity) repeated-measures ANOVA (repeated 

for imposed hip velocity). If differences were found to be significant, Bonferroni-corrected post hoc testing was 

performed. Gait kinematic variables included midstance peak hip extension and swing-phase peak knee flexion 

angles, as well as the peak hip extension velocity and the knee flexion velocity at toe-off. Paired t-tests were 

used to compare kinematic variables between limbs. Finally, Pearson product moment correlations were used to 

relate peak initial and prolonged reflex responses to gait kinematics (i.e., peak knee flexion during swing and 

knee flexion velocity at toe-off). All statistical tests were two sided and a significance level of P < 0.05 was used. 

 
FIG. 2.Example of muscle responses for a Control (left) and Stroke subject (right) during a “preactivated” trial. 

 

 
FIG. 3.Variables obtained during reflex trials. Top trace: hip extension movement. Bottom 3 traces: ensemble 

average of the linear envelope of rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM). Peak 

response is chosen within 150 ms of the initiation of movement (dark gray). Prolonged response is the 

difference in averaged activity from pre- to postmovement (light gray). 



RESULTS 

Reflex responses 
Following the initiation of the imposed hip movement, the stretched RF muscle as well as the unstretched VL 

and VM exhibited a brief reflexive response followed by a sustained EMG signal that was particularly evident in 

the Stroke group, as demonstrated in Fig. 3. The quadriceps response to the hip extension movement was 

generally larger in the Stroke group than in the Control group during both the relaxed and preactivated 

conditions. In addition, the quadriceps reflex responses were generally larger during the preactivated trials 

compared with the relaxed trials. 

Relaxed trials 
During the relaxed trials, small-amplitude reflex responses were observed in both Stroke and Control groups. An 

analysis of the initial peak reflexive response revealed a significant main effect for imposed velocity for the VL 

(ANOVA: P < 0.005); however, a significant velocity × group interaction (ANOVA: P < 0.05) suggested that the 

groups did not respond similarly. Post hoc testing related to VL muscle activity demonstrated that the Stroke 

group exhibited a significantly greater peak than the Control group at 90°/s (P < 0.05) and 120°/s (P < 0.01), 

although no difference was observed between the groups at 60°/s (P = 0.56). Despite nonsignificant main effects 

for group for the peak responses of the RF (ANOVA: P = 0.06) and VM (ANOVA: P = 0.30) (Fig. 4A), the Stroke 

group exhibited larger responses on average with group differences ranging from 0.9 to 5.1%MVIC for the RF, 

and 0.1 to 4.0%MVIC for the VM, depending on the test velocity. 

 
FIG. 4. Group means and SDs for the initial peak reflexive response for (A) relaxed and (C) preactivated trials for 

the Control and Stroke groups at 60, 90, and 120°/s. Prolonged response followed the initial peak response. 

Group means and SDs for the prolonged response for the (B) relaxed and (D) preactivated trials for the Control 

and Stroke groups at 60, 90, and 120°/s. 

In addition to the observed initial reflexive responses, prolonged muscle activity was also seen in the tested 

muscles. In general, the magnitude of reflex EMG activity in the Stroke group remained elevated after the 

imposed movement, whereas the Control group's muscle activity did not. Specifically, the VL exhibited a 

significant main effect for group (ANOVA: P < 0.05), revealing greater prolonged VL activity in the Stroke group 

compared with the Control group (Fig. 4B). Likewise, the RF exhibited a significant main effect for group 

(ANOVA: P < 0.05) and imposed hip velocity (ANOVA: P < 0.05), as well as a significant group × velocity 

interaction (ANOVA: P < 0.05). Post hoc tests revealed that the RF of the Stroke group was significantly greater 

than the Control group at all tested velocities (60°/s: P < 0.05; 90°/s: P < 0.01; 120°/s: P < 0.005). No group 

differences were observed in the prolonged response of the VM muscle (ANOVA: P = 0.07), although the Stroke 

group exhibited a 0.6–1.6%MVIC greater response than the Control group, depending on the imposed velocity. 



Preactivated trials 
Subjects preactivated the hip flexors before the imposed hip movement. No difference in preactivation level was 

observed between groups for the VL (P = 0.36), RF (P = 0.28), or VM muscles (P = 0.19). With the hip flexors 

preactivated to 5–10%MVIC, larger magnitude initial peak reflex responses were observed in the Stroke 

subject's RF (P < 0.001), VL (P < 0.01), and VM (P < 0.01) muscles compared with the relaxed condition (Fig. 2). 

Additionally, the RF's prolonged activity (P < 0.05) was significantly greater during the preactivated trials 

compared with the relaxed condition, although the VL (P = 0.07) and VM (P = 0.15) did not significantly increase 

with the hip flexors preactivated. 

The magnitude of the Stroke group's initial peak reflex response was generally observed to be larger than that of 

the Control group. Overall, there was a significant velocity × group interaction effect for the VL (ANOVA: P < 

0.05) and RF (ANOVA: P < 0.05) muscles, suggesting that the Stroke and Control groups responded to the 

imposed hip perturbation at different velocities in a different manner (Fig. 4C). Specifically, the Stroke group's 

initial reflex response was strongly velocity dependent for the VL (ANOVA: P = 0.001), RF (ANOVA: P < 0.001), 

and VM (ANOVA: P < 0.001) muscles, whereas the Control group exhibited a velocity-dependent response for 

the VL only (ANOVA: P < 0.005). As such, the difference in the response magnitude between groups was 

accentuated at greater imposed velocities. At the two slowest test velocities (60 and 90°/s), no significant 

differences were observed between the groups for any recorded muscles (group differences ranged from 2.1 to 

10.7%MVIC). However, for the fastest velocity (120°/s), all tested muscles (VL: P < 0.01; RF: P < 0.05; VM: P < 

0.05) exhibited a significantly greater initial response in the Stroke group compared with the Control group. 

Similar to the relaxed condition, a prolonged facilitation in muscle activity was observed in the Stroke group 

following hip extension with the hip flexors preactivated. A significant main effect for group was observed for 

the VL (ANOVA: P = 0.005) and RF (ANOVA: P < 0.001) muscles, revealing that the long-lasting EMG activity 

observed in the Stroke group was significantly greater than that of the Control group for these muscles. 

Although no group difference was observed for the VM (ANOVA: P = 0.09) muscle, the trend was similar to the 

responses of the VL and RF (Fig. 4D). The imposed test velocity had no significant effect on the magnitude of the 

prolonged reflex response for any of the tested muscles (all P values >0.50). 

Gait kinematics 
The subjects with stroke walked at an average of 0.6 ± 0.3m/s. During overground gait, differences in peak 

stance-phase hip extension between paretic (−8.4 ± 9.1°) and nonparetic limbs (−11.4 ± 8.2°) was not significant 

(P = 0.19) (Fig. 5A). In addition, no difference was observed between the paretic limb's peak hip extension (−8.4 

± 9.1°) during walking and the hip extension imposed by the Biodex motor during reflex testing (−13.6 ± 6.1°; P = 

0.18). Angular hip extension velocity, however, was slower on the paretic (49 ± 21°/s) versus nonparetic side (73 

± 29°/s; P < 0.05) during walking. During swing, the subjects flexed the paretic knee to 28 ± 15°, which was 

significantly less than the nonparetic peak knee flexion of 64 ± 8° (P < 0.001) (Fig. 5B). The individuals with stroke 

also flexed their hip significantly less during swing phase on the paretic side (23 ± 9°) compared with the 

nonparetic side (36 ± 10°; P < 0.001). No significant relationship was observed between the peak hip flexion 

angle and the peak knee flexion angle during swing (R = 0.44; P = 0.15). Knee flexion velocity at toe-off was also 

significantly reduced on the paretic side (163 ± 92°/s) compared with the nonparetic side (259 ± 93°/s; P < 

0.001). The knee flexion velocity at toe-off correlated significantly with the peak knee flexion angle during swing 

(R = 0.87, P < 0.001). 



 
FIG. 5.Sagittal plane hip (A) and knee (B) kinematics for the Stroke group's paretic (thick line) and nonparetic 

sides (thin line ±1 SD). 

Correlation of reflex measures and gait kinematics 
Paretic knee kinematics were correlated to the muscle responses observed after an isolated imposed hip 

extension movement. Because the individual muscle's prolonged responses were correlated to each other 

(R values between 0.68 and 0.86), the sum of the prolonged responses of the quadriceps muscles (VL + RF + VM) 

was used as the independent variable for the correlation with kinematic measures. The sum of the prolonged 

responses of the preactivated VL, RF, and VM was significantly correlated to swing-phase peak knee flexion 

angle and the strength of the relationship improved with higher test speeds (60°/s: R = −0.70, P < 0.05; 90°/s: R = 

−0.75, P < 0.005; 120°/s: R = −0.79, P < 0.005) (Fig. 6). Likewise, the sum of the prolonged response of the 

preactivated VL, RF, and VM muscles was negatively related to knee flexion velocity at toe-off (60°/s: R = 

−0.63, P < 0.05; 90°/s: R = −0.76; P < 0.005; 120°/s: R = −0.75; P < 0.005) (Fig. 7). In addition, the sum of the 

prolonged response of the preactivated quadriceps muscles elicited at 90°/s was negatively related to the peak 

hip extension velocity (R = −0.56; P = 0.05) during walking, although the responses elicited by the 60°/s (R = 

−0.18; P = 0.57) and 120°/s (R = −0.52; P = 0.08) hip movements were not (Fig. 8). Although the prolonged 

response of the quadriceps during isolated testing was significantly related to the impaired limb's movement 

pattern during walking, the initial peak reflexive response was not related to the peak knee flexion angle at any 

tested velocity (all P values >0.20). In addition, initial peak and prolonged reflex responses were not correlated 

to peak hip extension angle or gait speed. 



 
FIG. 6. Relationship between swing-phase peak knee flexion angle and prolonged response of the VL, RF, and 

VM muscles during “preactivated” trials at (A) 60°/s, (B) 90°/s, and (C) 120°/s. 



 
FIG. 7. Relationship between knee flexion velocity at toe-off and the prolonged response of the VL, RF, and VM 

muscles during the “preactivated” trials at (A) 60°/s, (B) 90°/s, and (C) 120°/s. 



 
FIG. 8. Relationship between peak hip extension velocity (deg/seg) and prolonged response of the VL, RF, and 

VM muscles during “preactivated” trials at (A) 60°/s, (B) 90°/s, and (C) 120°/s. 

DISCUSSION 
These data demonstrate that an imposed hip extension movement contributes to heightened, long-lasting 

quadriceps muscle activity in individuals with stroke that is correlated to knee kinematics during walking. These 

results provide insight into the potential mechanisms accounting for “spastic stiff-legged gait,” including the 

possible role of heteronymous reflexes from hip flexors onto knee extensors. 

Role of heteronymous reflexes in spastic gait 
The heightened response of the uniarticular knee extensor muscles (i.e., VL and VM) to an imposed hip 

movement suggests the presence of multijoint, heteronymous excitatory reflexes from the hip proprioceptors to 

the knee musculature. Given the RF's anatomical position as a hip flexor and knee extensor, it is tempting to 

attribute the uniarticular vasti's response to a stretch of the biarticular RF alone. In an analogous situation, 

however, group I afferents from the biarticular gastrocnemius muscle do not facilitate the uniarticular soleus 

muscle (Mao et al. 1984). Additionally, hip position afferents from numerous hip muscles are known to mediate 

lower extremity responses (Kriellaars et al. 1994), providing substantial redundancy in the sensorimotor system, 

suggesting that hip afferents from muscles other than the RF contribute to the initiation of the vasti's response. 

Descriptions of multijoint reflexes in animal models are pervasive in the literature (Nichols 1999) in addition to a 

recent report of a group II–mediated, excitatory connection between the ankle and knee musculature in 

unimpaired humans (Marchand-Pauvert et al. 2005). In comparison, individuals with stroke are well known to 



exhibit elevated single-joint reflex responses (i.e., spasticity; Lance 1980) and, more recently, have revealed 

augmented heteronymous reflex responses between the ankle and knee (Marque et al. 2001; Maupas et al. 

2004). Heteronymous reflex activity between the hip and knee joints, however, has not been described 

previously in unimpaired subjects or individuals with stroke, although individuals with SCI demonstrate 

analogous behaviors (Schmit and Benz 2002). The current results suggest similar, abnormal hip–knee reflex 

coupling between those with SCI and those with stroke, which may be related to spinal reflex reorganization 

after injury to the descending tracts. 

Origin of enhanced multijoint reflexes in people with stroke 
The multijoint reflexes observed in the current study were characterized by both an early velocity-mediated 

component and a prolonged component that was not velocity mediated and that persisted beyond the duration 

of the hip movement. The velocity dependence of the initial response is consistent with classically defined 

spasticity about a single joint (Lance 1980) and suggests a response to the hip flexor's velocity-sensitive (group 

Ia) muscle spindle activity. However, both single-joint spasticity (Nadeau et al. 1999a) and the early velocity-

mediated component of the heteronymous reflex responses described here have questionable roles in the 

performance of functional tasks (Patten et al. 2004), in particular, locomotion (however, see Damiano et al. 

2006). In contrast to the early component, the prolonged reflex component was not velocity mediated and was 

highly correlated to knee kinematics in the Stroke group. 

Although group I and group II hip afferents likely contribute to initiation of the early component of the reflex 

response, the precise neurophysiological mechanisms underlying the prolonged reflex responses to an imposed 

stretch are less clear. An increased reflex excitability of the group II pathways could have accounted for the 

larger prolonged reflex response in the Stroke group. Both test groups were exposed to a similar hip flexor 

perturbation and thus similar peripheral input (e.g., group II) during the static hold, although the groups 

responded differently to the imposed stretch of the hip muscles. Because peripheral inputs were assumed to be 

similar, differences in modulation at spinal/supraspinal levels likely contributed to differences in motor output. 

Although group II afferents likely contributed to the prolonged response, the long-lasting knee extensor activity 

in the individuals with Stroke may not be accounted for solely by group II afferent input. Although the excitatory 

drive from the group II afferents remains elevated during the hold portion, the discharge rate of the secondary 

endings diminishes during the static portion of a ramp-hold perturbation (Fischer and Schafer 2000), suggesting 

that other mechanisms may contribute to the long-lasting knee extensor activity as well. 

Another explanation for the prolonged muscle activity following stretch is the presence of nonlinear, ionic 

currents in spinal interneurons and/or motoneurons, which can both amplify and prolong motor output after 

brief afferent inputs (Kiehn and Eken 1998). The persistent inward currents that underlie the long-lasting 

depolarization and discharge (i.e., plateau potentials) of these spinal neurons are often facilitated by descending 

serotonergic and noradrenergic inputs from brain stem (reticular) nuclei. The presence of prolonged motor 

outputs after a brief synaptic input has previously been observed in humans without neurological injury (Kiehn 

and Eken 1997) as well as in individuals with SCI (Gorassini et al. 2004; Hornby et al. 2003, 2006). Similar 

responses have likewise been observed in decerebrate animal preparations (Crone et al. 1988; Hounsgaard et al. 

1988), which, much like a cortical stroke, have the potential for disinhibition of the brain stem. Such a 

disinhibition may facilitate modulation of α-motoneurons or low-threshold spinal interneurons (Hammar et al. 

2004) to generate long-lasting motor activity indicative of underlying persistent inward currents. Further 

neurophysiological testing is certainly required to investigate the potential contributions of these currents to 

abnormal motor strategies after stroke. 



Role of reflexive knee extensor activity in walking 
The presence of exaggerated heteronymous reflex activity between hip flexors and knee extensors in individuals 

with stroke may have important functional consequences. In particular, the heightened quadriceps muscle 

responses that persist following hip extension were correlated with reduced knee flexion velocity at toe-off as 

well as the peak knee flexion angle attained during the swing phase of walking. Although this correlation does 

not imply “cause and effect,” it provides evidence that the quadriceps response to isolated hip extension 

appears to be related to knee kinematics during walking. The time spent in the double support period at the end 

of the paretic limb's stance phase for the subjects in this study was 223 ± 86 ms. This corresponds well to the 

250-ms time chosen to evaluate the prolonged reflex response to imposed hip movements and indicates that 

the muscle activity we observed in an isolated setting could have a direct impact on the specific phase of the gait 

cycle purported to be crucial to attaining sufficient knee flexion. A potential limitation, however, is that if there 

is a critical amount of hip extension required to elicit the quadriceps response and that threshold was achieved 

in supine, but not in walking, then the reflex would not contribute to decreased swing-phase knee flexion. 

Amounts of hip extension during walking and reflex testing, however, were not significantly different (P = 0.18), 

but additional work will need to be performed to establish whether such a critical amount of hip extension exists 

to trigger the quadriceps activity. It was also observed that the hip extension velocity during walking was 

inversely related to the magnitude of the quadriceps responses triggered by faster imposed hip movements. 

Peak hip extension occurs in late stance, during the double support phase of the leg initially in stance. Although 

the knee joint normally flexes during this period in unimpaired individuals, even small increases in vasti activity 

during double support can produce substantial reductions in knee flexion velocity, the marker for subsequent 

swing-phase knee flexion (Goldberg et al. 2004). A potential limitation of our data is that we did not record 

quadriceps EMG from the Stroke group during the walking analysis. Although this may potentially limit our 

interpretation of the data, there is ample evidence to demonstrate that the rectus femoris and the vasti are 

overactive during terminal stance/early swing (Kerrigan et al. 1991; Remy-Neris et al. 2003; Sung and Bang 

2000; Waters et al. 1979). The results presented here suggest a possible neurophysiologic mechanism to explain 

this overactivity, although future research is certainly warranted to confirm this hypothesis. Additionally, it is 

certainly possible that other impairments in muscle function may also contribute to the observed reduction in 

swing-phase knee flexion. 

Although overactivity of the quadriceps muscle is often assumed to be the cause of stiff-knee gait, the 

mechanical coupling between the joints of the leg suggests that alterations in muscle function at other joints in 

the lower extremity also influence knee flexion during swing. For instance, there has been evidence that 

reductions in either hip or/and ankle moments at toe-off limit subsequent swing-phase knee flexion (Goldberg 

et al. 2004; Kerrigan et al. 1998; Olney and Richards 1996; Piazza and Delp 1996). At the ankle, both overactivity 

of the soleus muscle (Neptune et al. 2001) or inadequate ankle power generation at toe-off (Kerrigan et al. 

2001) are thought to lead to reduced swing-phase knee flexion. The contribution of these variables to the 

decreased swing-phase knee flexion observed in this study is not known. It is possible that these variables, in 

addition to the heightened reflex response of the quadriceps, substantially contributed to decreased swing-

phase knee flexion. 

Others have noted that strong hip flexion can adequately compensate for the diminished push-off at the ankle 

(Nadeau et al. 1999b), although reduced hip flexor moments have been tied to diminished swing-phase knee 

flexion (Olney and Richards 1996; Piazza and Delp 1996). It is possible, then, that decreased hip flexion was a 

factor in the decreased swing-phase knee flexion observed in the present study. Despite this prior evidence, 

peak hip flexion and peak knee flexion angles during swing were not related in our Stroke group. Clearly, 

however, there are many potential mechanisms, in addition to reflex coupling of the hip and knee reported 

here, that may contribute to the stiff-knee gait pattern often seen after stroke. Future studies should address 



the importance of each of these potential mechanisms and attempt to understand how these mechanisms may 

differ in subgroups of the poststroke population. 

The observation that preactivation of the hip flexor muscles (with RF) facilitate the RF reflex response to 

imposed hip extension may also have implications for gait. During swing initiation, flexion of the leg is driven, in 

part, by activation of the hip muscles, which occurs near peak hip extension. Despite the RF's anatomical 

position as a hip flexor, emerging evidence suggests that activation of the RF muscle will actually accelerate the 

hip into extension by dynamic coupling with the knee (Hernandez et al. 2007; Neptune et al. 2004). With respect 

to the hip extensor, we speculate that the presence of increased RF activity may actually contribute to a 

reduction in hip flexion around toe-off (Kerrigan et al. 2001). Additionally, the presence of RF activity during 

both terminal stance of walking (Waters et al. 1979) and during the preactivated condition of our reflex testing 

suggests that we are producing comparable behaviors. The fact that hip flexion (with activation of the RF) 

facilitates the inappropriate prolonged RF activity in an isolated setting may prompt individuals with stroke to 

unconsciously reduce the net hip flexor moment during walking. Such a strategy may be ineffective, however, in 

increasing knee flexion because a larger hip flexor moment is thought to be important for facilitating knee 

flexion during swing (Kerrigan et al. 1998). In addition, some individuals with stroke need to increase hip flexion 

moments to compensate for plantarflexor weakness (Nadeau et al. 1999b). Such an increase in hip flexor 

activation, however, appears to augment the reflex excitability of the RF under isolated settings. Inappropriate 

knee extensor activity, initiated by hip extension and facilitated by hip flexor activation before swing, may 

therefore provide a neurophysiological basis for the commonly observed kinematic walking impairments in 

subjects with stroke. 

A potential limitation to the current results is that different head/trunk orientations were used for the 

acquisition of heteronymous reflexes (e.g., supine) and the gait analysis (e.g., upright). The vestibular system's 

influence on spinal circuitry may therefore be altered, affecting both volitional (Lewek et al. 2006) and reflex 

activity (Rossi et al. 1988; Trimble 1998). Specifically, extensor circuits appear to be inhibited with the body in 

supine relative to an upright posture (Lewek et al. 2006; Rossi et al. 1988; Trimble 1998). During an upright task 

such as walking, the magnitude of the reflex response has the potential to be augmented beyond what was 

observed in supine. Other influences, such as a prolonged load through the limb, are also known to suppress 

extensor pathways in the lower leg (Trimble 1998), although load-release (e.g., toe-off) can further increase 

knee extensor activity (Wu and Schmit 2006). Thus any response observed in a supine, unloaded condition 

appears to convey an underestimation of extensor reflex activity compared with what might be observed during 

gait. Nevertheless, because all subjects in both groups experienced the same postures, the strength of the 

relationship between the observed reflex response and kinematics during gait should remain fundamentally 

unaffected. 

The current data suggest an important reorganization of the reflex regulation that may influence gait after 

stroke. Although others have emphasized the importance of attaining hip extension during terminal stance to 

maximize subsequent hip flexion after neurological injury (Behrman et al. 2005) our data suggest that 

concomitant knee extensor activity may be triggered as a result of a rapid hip extension movement. 
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