5 research outputs found
Monoamine Oxidase A (MAO-A): A Therapeutic Target in Lung Cancer
Monoamine oxidase-A (MAO-A), a pro-oxidative enzyme catalyzes the oxidative deamination of endogenous and exogenous monoamines/neurotransmitters like dopamine, serotonin, norepinephrine or tyramine and converting them into their corresponding aldehydes and reactive oxygen species (ROS). Hyperactivity of MAO-A has been shown to be involved in depression, neuro-degeneration including Parkinson’s and Alzheimer’s diseases, neuropsychiatric disorders and cardiovascular diseases. Our recent results however demonstrated the involvement of MAO-A in promoting aggressiveness of lung carcinoma. We found both constitutive and inducible expression of MAO-A in non-small cell lung cancer cells H1299 and in A549 lung epithelial carcinoma cells. By using knockout (by CRISPR-Cas9 gene editing technology) or knockdown (using MAO-A specific esiRNA) MAO-A cells we demonstrated the role of MAO-A in promoting lung cancer aggressiveness and epithelial to mesenchymal transition (EMT). From our observations, we can conclude that MAO-A may be considered as a potential therapeutic target for the intervention and treatment of lung carcinoma
Regulation of Monoamine Oxidase A (MAO-A) Expression, Activity, and Function in IL-13–Stimulated Monocytes and A549 Lung Carcinoma Cells
Monoamine oxidase A (MAO-A) is a mitochondrial flavoen-zyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 nonsmall cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element– binding protein (CREB), the same transcription factors that control IL-13– dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13–stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13– driven expression and activity of MAO-A was 15-LO–independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO– dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator–activated receptor (PPAR) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPAR. We further report that the IL-13–STAT6 – 15-LO–PPAR axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicat
Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them
Kinetics and mechanism of interaction of Pt(II) complex with bio-active ligands and <i>in vitro</i> Pt(II)-sulfur adduct formation in aqueous medium: bio-activity and computational study
<p>Kinetics of interaction between [Pt(pic)(H<sub>2</sub>O)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>, <b>2</b> (where pic = 2-aminomethylpyridine) with the selected ligands DL-methionine (DL-meth) and DL-penicillamine (DL-pen) have been studied spectrophotometrically in aqueous medium separately as a function of [<b>2</b>] as well as [ligand], pH and temperature at constant ionic strength. The association equilibrium constants (<i>K</i><sub>E</sub>) for the outer sphere complex formation have been evaluated together with the rate constants for the two subsequent steps. Activation parameters (enthalpy of activation ΔH<sup>≠</sup> and entropy of activation ΔS<sup>≠</sup>) were calculated from the Eyring equation. An associative mechanism of substitution is proposed for both reactions on the basis of the kinetic observations, evaluated activation parameters, and spectroscopic data. Structural optimizations, HOMO-LUMO energy calculation, and Natural Bond Orbital (NBO) analysis of <b>2</b>–<b>4</b> were carried out with Density Functional Theory. Bonding mode of thiol and thio-ether is confirmed by spectroscopic analyses and NBO calculation. Cytotoxic properties of <b>2</b>–<b>4</b> were explored on A549 carcinoma cell lines; DNA-binding properties of the complexes were also investigated by gel electrophoresis.</p
Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13–stimulated monocytes and A549 lung carcinoma cells
Monoamine oxidase A (MAO-A) is a mitochondrial flavoen-zyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 nonsmall cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element– binding protein (CREB), the same transcription factors that control IL-13– dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13–stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13– driven expression and activity of MAO-A was 15-LO–independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO– dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator–activated receptor (PPAR) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPAR. We further report that the IL-13–STAT6 – 15-LO–PPAR axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicat