25 research outputs found

    Lessons Learned from the Investigation of an Anomalous Termination of BETTII

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) mission launched from Palestine, Texas in June 2017. After an exciting launch and successful cruise, the BETTII gondola suffered an anomalous event at termination. BETTII separated from its parachute and free-fell 136,000 feet into the west Texas desert. This event was classified as a "close-call" and investigated as such. We present here the recovery effort required to find the payload and extract the payload from its impact site. We also present lessons learned from the event and results from the investigation, the design for the next BETTII gondola, and a path forward for return to flight

    A Dispersive Backend Design for the 'Double-Fourier' Interferometer BETTII

    Get PDF
    BETTII (Balloon Experimental Twin Telescope for Infra-red Interferometry) is designed to provide high angular resolution spectroscopic data in the far-infrared (FIR) wavelengths. The most significant limitation for BETTII is its sensitivity; obtaining spectral signal-to-noise ratio greater than 5 in less than 10 minutes requires sources greater than 13 Janskys (Jy). One possible way to improve the signal-to-noise ratio (SNR) for future BETTII flights is by reducing the spectral bandwidth post beam-combination. This involves using a dispersive element to spread out a polychromatic point source PSF (Point Spread Function) on the detector array, such that each pixel corresponds to a small fraction of the bandwidth. This results in a broader envelope of the interferometric fringe pattern allowing more fringes to be detected, and thereby improving the spectral SNR. Here we present the analysis and optical design of the dispersive backend, discussing the tradeoffs and how it can be combined with the existing design

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): First Flight

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter far-infrared (30-100 m) double-Fourier Michelson interferometer designed to fly on a high altitude scientific balloon. The project began in 2011, and the payload was declared ready for flight in September 2016. Due to bad weather, the first flight was postponed until June 2017; BETTII was successfully launched on June 8, 2017 for an engineering flight. Over the course of the one night flight, BETTII acquired a large amount of technical data that we are using to characterize the payload. Unfortunately, the flight ended with an anomaly that resulted in destruction of the payload. In this paper, we will discuss the path to BETTII flight, the results of the first flight, and some of the plans for the future

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): towards the first flight

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready forits commissioning flight

    Liquisolid tablets: a novel approach for drug delivery

    No full text
    Liquisolid system is a novel concept of drug delivery via oral route. This technique is applied to water insoluble drugs and lipophilic drugs to sustain their release. Formulation and manufacture of the liquisolid tablets is quite simple method according to new mathematical model described by Spireas et al. It involves dissolving the drug in suitable non-volatile solvent and then adding this liquid medication to the mixture of carrier and coating materials. Mixing of this will lead to liquisolid system which is subjected to tabletting by direct compression. Increase in dissolution rate and in turn improvement in bioavailability is observed in case of poorly water soluble drugs. However, sustained effect is achieved in case of water soluble drugs. By use of this technique, liquid medications such as solutions or suspensions of water insoluble drugs in suitable non-volatile liquid vehicles can be easily converted into powder with acceptable flow properties and compression behavior using suitable powder excipients. Keywords: Dissolution enhancement, Drugs formulation, Drug release, Liquisolid tablets

    Multi-reward reinforcement learning based development of inter-atomic potential models for silica

    No full text
    Abstract Silica is an abundant and technologically attractive material. Due to the structural complexities of silica polymorphs coupled with subtle differences in Si–O bonding characteristics, the development of accurate models to predict the structure, energetics and properties of silica polymorphs remain challenging. Current models for silica range from computationally efficient Buckingham formalisms (BKS, CHIK, Soules) to reactive (ReaxFF) and more recent machine-learned potentials that are flexible but computationally costly. Here, we introduce an improved formalism and parameterization of BKS model via a multireward reinforcement learning (RL) using an experimental training dataset. Our model concurrently captures the structure, energetics, density, equation of state, and elastic constants of quartz (equilibrium) as well as 20 other metastable silica polymorphs. We also assess its ability in capturing amorphous properties and highlight the limitations of the BKS-type functional forms in simultaneously capturing crystal and amorphous properties. We demonstrate ways to improve model flexibility and introduce a flexible formalism, machine-learned ML-BKS, that outperforms existing empirical models and is on-par with the recently developed 50 to 100 times more expensive Gaussian approximation potential (GAP) in capturing the experimental structure and properties of silica polymorphs and amorphous silica

    Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): delay lines and alignment

    No full text
    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 μm) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 μm and 60-90 μm), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 μm) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio- spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer

    The balloon experimental twin telescope for infrared interferometry (BETTII): An experiment for high angular resolution in the far-infrared

    No full text
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a new balloon-borne far-infrared interferometer, being designed to provide spatially-resolved spectroscopy in the far infrared (30–90 μm). The combination of an 8-meter baseline with a double-Fourier Michelson interferometer allows the identification and separation of closely-spaced astronomical sources, while also providing a low-resolution spectrum for each source. In this wavelength range, BETTII will provide subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. This paper provides an overview of the entire design of the BETTII experiment, with a short discussion of the predicted performance on flight
    corecore