82 research outputs found

    Signal Timing Optimization Based on Fuzzy Compromise Programming for Isolated Signalized Intersection

    Get PDF
    In order to optimize the signal timing for isolated intersection, a new method based on fuzzy programming approach is proposed in this paper. Considering the whole operation efficiency of the intersection comprehensively, traffic capacity, vehicle cycle delay, cycle stops, and exhaust emission are chosen as optimization goals to establish a multiobjective function first. Then fuzzy compromise programming approach is employed to give different weight coefficients to various optimization objectives for different traffic flow ratios states. And then the multiobjective function is converted to a single objective function. By using genetic algorithm, the optimized signal cycle and effective green time can be obtained. Finally, the performance of the traditional method and new method proposed in this paper is compared and analyzed through VISSIM software. It can be concluded that the signal timing optimized in this paper can effectively reduce vehicle delays and stops, which can improve traffic capacity of the intersection as well

    A Novel Fuzzy c -Means Clustering Algorithm Using Adaptive Norm

    Get PDF
    Abstract(#br)The fuzzy c -means (FCM) clustering algorithm is an unsupervised learning method that has been widely applied to cluster unlabeled data automatically instead of artificially, but is sensitive to noisy observations due to its inappropriate treatment of noise in the data. In this paper, a novel method considering noise intelligently based on the existing FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combination with relative entropy, are proposed. Adaptive-FCM, relying on an inventive integration of the adaptive norm, benefits from a robust overall structure. Adaptive-REFCM further integrates the properties of the relative entropy and normalized distance to preserve the global details of the dataset. Several experiments are carried out,..

    Threshold of vapour–pressure deficit constraint on light use efficiency varied with soil water content

    Get PDF
    Understanding the constraints on light-use efficiency (LUE) induced by high evaporative water demand (vapour–pressure deficit; VPD) and soil water stress (soil moisture content; SMC) is crucial for understanding and simulating vegetation productivity, particularly in the arid and semi-arid regions. However, the relative impacts of VPD and SMC on LUE are unclear, as we lack a mechanistic understanding of impacts and their interactions. In this study, we quantified the relative roles of VPD and SMC in limiting LUE and analysed the interactions among VPD, SMC and LUE using data from CO2 and water flux stations and weather stations along a climatic gradient in the Heihe River Basin, China. We found a threshold of VPD constraint on LUE; above the threshold, LUE decreased at only 3.6% to 23.1% of the rate below the threshold. As SMC decreased, however, the VPD threshold increased, and the reduction of LUE caused by VPD decreased significantly, which is more than half of that in moister regions. Therefore, both VPD and SMC played essential roles in LUE limitation caused by water stress. A threshold also existed for heat flux and the correlation between SMC and LUE; the strength of the correlation first decreased and then increased with increasing VPD. Our results clarified the relative impacts of VPD and SMC on LUE, and can improve simulation and prediction of plant productivity

    A Systematic Molecular Pathology Study of a Laboratory Confirmed H5N1 Human Case

    Get PDF
    Autopsy studies have shown that human highly pathogenic avian influenza virus (H5N1) can infect multiple human organs other than just the lungs, and that possible causes of organ damage are either viral replication and/or dysregulation of cytokines and chemokines. Uncertainty still exists, partly because of the limited number of cases analysed. In this study, a full autopsy including 5 organ systems was conducted on a confirmed H5N1 human fatal case (male, 42 years old) within 18 hours of death. In addition to the respiratory system (lungs, bronchus and trachea), virus was isolated from cerebral cortex, cerebral medullary substance, cerebellum, brain stem, hippocampus ileum, colon, rectum, ureter, aortopulmonary vessel and lymph-node. Real time RT-PCR evidence showed that matrix and hemagglutinin genes were positive in liver and spleen in addition to positive tissues with virus isolation. Immunohistochemistry and in-situ hybridization stains showed accordant evidence of viral infection with real time RT-PCR except bronchus. Quantitative RT-PCR suggested that a high viral load was associated with increased host responses, though the viral load was significantly different in various organs. Cells of the immunologic system could also be a target for virus infection. Overall, the pathogenesis of HPAI H5N1 virus was associated both with virus replication and with immunopathologic lesions. In addition, immune cells cannot be excluded from playing a role in dissemination of the virus in vivo

    A Fault Warning Method for Electric Vehicle Charging Process Based on Adaptive Deep Belief Network

    No full text
    If an accident occurs during charging of an electric vehicle (EV), it will cause serious damage to the car, the person and the charging facility. Therefore, this paper proposes a fault warning method for an EV charging process based on an adaptive deep belief network (ADBN). The method uses Nesterov-accelerated adaptive moment estimation (NAdam) to optimize the training process of a deep belief network (DBN), and uses the historical data of EV charging to construct the ADBN of the normal charging process of an EV model. The real-time data of EV charging is obtained and input into the constructed ADBN model to predict the output, calculate the Pearson coefficient between the predicted output and the actual measured value, and judge whether there is a fault according to the size of the Pearson coefficient to realize the fault warning of the EV charging process. The experimental results show that the method is not only able to accurately warn of a fault in the EV charging process, but also has higher warning accuracy compared with the back propagation neural network (BPNN) and conventional DBN methods

    Fault Diagnosis Method of DC Charging Points for EVs Based on Deep Belief Network

    No full text
    According to the complex fault mechanism of direct current (DC) charging points for electric vehicles (EVs) and the poor application effect of traditional fault diagnosis methods, a new kind of fault diagnosis method for DC charging points for EVs based on deep belief network (DBN) is proposed, which combines the advantages of DBN in feature extraction and processing nonlinear data. This method utilizes the actual measurement data of the charging points to realize the unsupervised feature extraction and parameter fine-tuning of the network, and builds the deep network model to complete the accurate fault diagnosis of the charging points. The effectiveness of this method is examined by comparing with the backpropagation neural network, radial basis function neural network, support vector machine, and convolutional neural network in terms of accuracy and model convergence time. The experimental results prove that the proposed method has a higher fault diagnosis accuracy than the above fault diagnosis methods

    Real-Time Fire Detection Method for Electric Vehicle Charging Stations Based on Machine Vision

    No full text
    During the charging process of electric vehicles (EV), the circuit inside the charger plug is connected in series, the charger input voltage does not match the rated input voltage, the temperature caused by the severe heating of the charging time is too high for too long, and other factors are very likely to trigger a fire in the vehicle charging pile. In this paper, an improved You Only Look Once v4 (YOLOv4) real-time target detection algorithm based on machine vision is proposed to monitor the site based on existing monitoring equipment, transmit live video information in real-time, expand the monitoring range, and significantly reduce the cost of use. During the experiment, the improved neural network model was trained by a homemade fire video image dataset, and a K-means clustering algorithm iwasintroduced to recalculate the anchor frame size for the specific object of flame; the existing dataset was used to perform multiple divisions by using a tenfold cross-validation algorithm, thus avoiding the selection of chance hyperparameters and models that do not have generalization ability because of special divisions. The experimental results show that the improved algorithm is fast and accurate in detecting large-size flames in real-time and small-size flames at the beginning of a fire, with a detection speed of 43 fps/s, mAP value of 91.53%, and F1 value of 0.91. Compared with YOLOv3 and YOLOv4 models, the improved model is sensitive to detecting different sizes of flames. It can suppress false alarms well in a variety of complex lighting environments. The prediction frame size fits the area where the target is located, the detection accuracy remains stable, and the comprehensive performance of the network model is significantly improved to meet the demand of real-time monitoring. It is significant for developing the EV industry and enhancing emergency response capability

    Real-Time Fire Detection Method Based on Computer Vision for Electric Vehicle Charging Safety Monitoring

    No full text
    In the process of charging and using electric vehicles, lithium battery may cause hazards such as fire or even explosion due to thermal runaway. Therefore, a target detection model based on the improved YOLOv5 (You Only Look Once) algorithm is proposed for the features generated by lithium battery combustion, using the K-means algorithm to cluster and analyse the target locations within the dataset, while adjusting the residual structure and the number of convolutional kernels in the network and embedding a convolutional block attention module (CBAM) to improve the detection accuracy without affecting the detection speed. The experimental results show that the improved algorithm has an overall mAP evaluation index of 94.09%, an average F1 value of 90.00%, and a real-time detection FPS (frames per second) of 42.09, which can meet certain real-time monitoring requirements and can be deployed in various electric vehicle charging stations and production platforms for safety detection and will provide a guarantee for the safe production and development of electric vehicles in the future

    Real-Time Fire Detection Method for Electric Vehicle Charging Stations Based on Machine Vision

    No full text
    During the charging process of electric vehicles (EV), the circuit inside the charger plug is connected in series, the charger input voltage does not match the rated input voltage, the temperature caused by the severe heating of the charging time is too high for too long, and other factors are very likely to trigger a fire in the vehicle charging pile. In this paper, an improved You Only Look Once v4 (YOLOv4) real-time target detection algorithm based on machine vision is proposed to monitor the site based on existing monitoring equipment, transmit live video information in real-time, expand the monitoring range, and significantly reduce the cost of use. During the experiment, the improved neural network model was trained by a homemade fire video image dataset, and a K-means clustering algorithm iwasintroduced to recalculate the anchor frame size for the specific object of flame; the existing dataset was used to perform multiple divisions by using a tenfold cross-validation algorithm, thus avoiding the selection of chance hyperparameters and models that do not have generalization ability because of special divisions. The experimental results show that the improved algorithm is fast and accurate in detecting large-size flames in real-time and small-size flames at the beginning of a fire, with a detection speed of 43 fps/s, mAP value of 91.53%, and F1 value of 0.91. Compared with YOLOv3 and YOLOv4 models, the improved model is sensitive to detecting different sizes of flames. It can suppress false alarms well in a variety of complex lighting environments. The prediction frame size fits the area where the target is located, the detection accuracy remains stable, and the comprehensive performance of the network model is significantly improved to meet the demand of real-time monitoring. It is significant for developing the EV industry and enhancing emergency response capability
    • …
    corecore