160 research outputs found

    How Can Technology be Used to Push Sport Forward?

    Get PDF
    This slide presentation reviews ways that NASA uses technology in training astronauts and how these can assist in training athletes

    The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion

    Get PDF
    The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies

    The Effect of Manipulating Subject Mass on Lower Extremity Torque Patterns During Locomotion

    Get PDF
    During locomotion, humans adapt their motor patterns to maintain coordination despite changing conditions (Reisman et al., 2005). Bernstein (1967) proposed that in addition to the present state of a given joint, other factors, including limb inertia and velocity, must be taken into account to allow proper motion to occur. During locomotion with added mass counterbalanced using vertical suspension to maintain body weight, vertical ground reaction forces (GRF's) increase during walking but decrease during running, suggesting that adaptation may be velocity-specific (De Witt et al., 2006). It is not known, however, how lower extremity joint torques adapt to changes in inertial forces. The purpose of this investigation was to examine the effects of increasing body mass while maintaining body weight upon lower-limb joint torque during walking and running. We hypothesized that adaptations in joint torque patterns would occur with the addition of body mass

    Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths

    Get PDF
    The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD. However, hip adduction ROM was greater during the NS and SD than during the ND. Hip rotation ROM was greater during the WS than during the NS and SD, and was greater during the SD than during the ND. For knee and ankle flexion ROM, the ND, WS, and SD were not different, but ROM was greater during the NS than the ND and greater during the WS than the SD. Total eccentric work was greater during the WS than the SD. Otherwise, there were no differences in eccentric or concentric work between conditions. CONCLUSIONS: Although squat and deadlift exercises consist of similar motions, there are kinematic differences between them that depend on stance width. Total eccentric and concentric work are similar for different lifts, but differing kinematics may require activation of different musculature for each variation. With respect to each condition, in the ND the ROM of each joint tended to be less, and the WS tended to trade knee motion for hip motion. PRACTICAL APPLICATIONS: Knowledge of differences in kinematics and kinetics between different squat and deadlift variations is important for coaches and rehabilitation personnel to understand when prescribing exercise. Our results suggest that each variation of the squat and deadlift should be considered a separate exercise that may induce different long-term training effects

    AGA Clinical Practice Update on interventional EUS for vascular investigation and therapy: Commentary

    Get PDF
    DESCRIPTION: The purpose of this AGA Institute Clinical Practice Update is to review the available evidence supporting and examine opportunities for future research in endoscopic ultrasound-guided vascular investigation and therapies. METHODS: This Clinical Practice Update was commissioned and approved by the AGA Institute Clinical Practice Updates Committee and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership, and underwent internal peer review by the Clinical Practice Updates Committee and external peer review through standard procedures of Clinical Gastroenterology and Hepatology. This expert commentary incorporates important as well as recently published studies in this field, and it reflects the experiences of the authors who are advanced endoscopists with expertise in endoscopic ultrasound-guided vascular investigation and therapy

    Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise

    Get PDF
    Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill

    Rescue Endoscopic Ultrasound (EUS)-Guided Trucut Biopsy Following Suboptimal EUS-Guided Fine Needle Aspiration for Mediastinal Lesions

    Get PDF
    Background/Aims Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) and Trucut biopsy (TCB) are sensitive techniques for diagnosing mediastinal lesions, but it is unclear how either one or both should be used to obtain a pathologic diagnosis. The objective of our study was to evaluate whether EUS-TCB impacts the diagnosis of mediastinal lesions after the initial on-site review of EUS-FNA specimen suggests a suboptimal result. Methods We enrolled consecutive patients with mediastinal lesions who underwent EUS-TCB during the same procedure if the initial EUS-FNA demonstrated an inadequate FNA sample or suggested that histopathology was required for diagnosis. Diagnostic accuracies between procedures were compared as the main outcome. Results Twenty-seven patients (14 men; median age, 56 years; range, 19 to 82 years) underwent EUS-FNA and EUS-TCB to evaluate a mediastinal lymphadenopathy or mass (n=17), to determine the cancer stage (n=3) or to exclude tumor recurrence or metastasis (n=7). The overall diagnostic accuracies of EUS-FNA and EUS-TCB were 78% and 67%, respectively (p=0.375). The combined diagnostic accuracy of EUS-FNA plus EUS-TCB was 82%. In six patients with nondiagnostic EUS-FNA, EUS-TCB provided a final diagnosis in one patient (17%). Conclusions In the current series of patients with mediastinal masses or adenopathy, the administration of EUS-TCB following suboptimal results for the on-site cytology review did not increase the diagnostic yield

    Kinematic and EMG Comparison of Gait in Normal and Microgravity

    Get PDF
    Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments

    Confocal Endomicroscopy Characteristics of Different Intraductal Papillary Mucinous Neoplasm Subtypes

    Get PDF
    Intraductal papillary mucinous neoplasms are classified into gastric, intestinal, pancreatobiliary, and oncocytic subtypes where morphology portends disease prognosis. The study aim was to demonstrate EUS-guided needle-based confocal laser endomicroscopy imaging features of intraductal papillary mucinous neoplasm subtypes. Four subjects, each with a specific intraductal papillary mucinous neoplasm subtype were enrolled. An EUS-guided needle-based confocal laser endomicroscopy miniprobe was utilized for image acquisition. The mean cyst size from the 4 subjects (2 females; mean age = 65.3±12 years) was 36.8±12 mm. All lesions demonstrated mural nodules and focal dilation of the main pancreatic duct. EUS-nCLE demonstrated characteristic finger-like papillae with inner vascular core for all subtypes. The image patterns of the papillae for the gastric, intestinal, and pancreatobiliary subtypes were similar. However, the papillae in the oncocytic subtype were thick and demonstrated a fine scale-like or honeycomb pattern with intraepithelial lumina correlating with histopathology. There was significant overlap in the needle-based confocal laser endomicroscopy findings for the different intraductal papillary mucinous neoplasm subtypes; however, the oncocytic subtype demonstrated distinct patterns. These findings need to be replicated in larger multicenter studies
    • …
    corecore