10 research outputs found

    Exceeding the threshold value for Trioza apicalis Förster 1848 in carrot fields did not cause damage as revealed during monitoring in Germany from 2017–2020

    Get PDF
    The carrot psyllid Trioza apicalis Förster 1848 is a carrot pest in Europe that can cause serious damages in case of massive occurrence. Damages up to a total loss of yield have been reported from Scandinavian countries but also from Switzerland. The action threshold to control the pest with chemical pesticides is 0.2 T. apicalis per day and trap caught by sticky traps. We investigated the number of T. apicalis with sticky traps on carrot fields of the study regions Lüneburg/Uelzen and Hameln/Bad Pyrmont in Germany, during the period 2017–2020. The number of T. apicalis caught was generally very low in both study regions. On several fields in successive weeks almost no individuals were found in the study region Hameln/Bad Pyrmont. In Lüneburg/Uelzen was at least one field each year where the number of carrot psyllid was clearly higher than in all other fields and exceeded the threshold level. Surprisingly on carrot fields in close proximity to carrot fields from the previous year, the T. apicalis numbers were only slightly increased. Nonetheless, no loss of yield was reported for any of the fields in the four years of the study, although the generally defined threshold has been exceeded on many of the investigated carrot fields.Bundesanstalt für Landwirtschaft und Ernährung http://dx.doi.org/10.13039/501100010771Bundesanstalt für Landwirtschaft und Ernährung (DE)Julius Kühn-Institut (JKI), Bundesforschungsinstitut für Kulturpflanzen (4250)Peer Reviewe

    Exceeding the threshold value for Trioza apicalis Förster 1848 in carrot fields did not cause damage as revealed during monitoring in Germany from 2017–2020

    Get PDF
    The carrot psyllid Trioza apicalis Förster 1848 is a carrot pest in Europe that can cause serious damages in case of massive occurrence. Damages up to a total loss of yield have been reported from Scandinavian countries but also from Switzerland. The action threshold to control the pest with chemical pesticides is 0.2 T. apicalis per day and trap caught by sticky traps. We investigated the number of T. apicalis with sticky traps on carrot fields of the study regions Lüneburg/Uelzen and Hameln/Bad Pyrmont in Germany, during the period 2017–2020. The number of T. apicalis caught was generally very low in both study regions. On several fields in successive weeks almost no individuals were found in the study region Hameln/Bad Pyrmont. In Lüneburg/Uelzen was at least one field each year where the number of carrot psyllid was clearly higher than in all other fields and exceeded the threshold level. Surprisingly on carrot fields in close proximity to carrot fields from the previous year, the T. apicalis numbers were only slightly increased. Nonetheless, no loss of yield was reported for any of the fields in the four years of the study, although the generally defined threshold has been exceeded on many of the investigated carrot fields

    Innovations in phenotyping of mouse models in the German Mouse Clinic.

    Get PDF
    Under the label of the German Mouse Clinic (GMC), a concept has been developed and implemented that allows the better understanding of human diseases on the pathophysiological and molecular level. This includes better understanding of the crosstalk between different organs, pleiotropy of genes, and the systemic impact of envirotypes and drugs. In the GMC, experts from various fields of mouse genetics and physiology, in close collaboration with clinicians, work side by side under one roof. The GMC is an open-access platform for the scientific community by providing phenotypic analysis in bilateral collaborations ("bottom-up projects") and as a partner and driver in international large-scale biology projects ("top-down projects"). Furthermore, technology development is a major topic in the GMC. Innovative techniques for primary and secondary screens are developed and implemented into the phenotyping pipelines (e.g., detection of volatile organic compounds, VOCs)

    B. Sprachwissenschaft.

    No full text

    Innovations in phenotyping of mouse models in the German Mouse Clinic

    No full text
    corecore