33 research outputs found

    Shale disposal of U.S. high-level radioactive waste.

    Full text link
    Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy

    Gas permeability measurements from pressure pulse decay laboratory data using pseudo-pressure and pseudo-time transformations

    No full text
    Abstract This paper presents a pseudo-pressure and pseudo-time straight-line approach to interpret laboratory pulse decay data in order to estimate rock core permeability using gas as the pore fluid. The implementation of the straight-line approach provides a practical method to estimate gas permeability from experimental data, as long as changes in gas viscosity and compressibility are negligible. On the other hand, pseudo-pressure and pseudo-time allow the transformation of the compressible flow equation from its highly nonlinear form to a quasi-linear partial differential equation, where changes in gas viscosity, gas compressibility and compressibility factor are accounted for. The purpose of this work is to combine both, pseudo-functions and the straight-line approach to estimate gas permeability from pressure pulse laboratory data with a more rigorous treatment of gas properties. Five pulse decay experiments were performed in Marcellus shale cores at pore pressures ranging from 130 to 700 psi in a triaxial cell to estimate permeability and porosity of ultra-low permeability cores. The experiments were made in an increasing order of equilibration pressure starting from 130 until 700 psi, and vertical and radial stresses kept constant at 1500 psi. Permeability estimates were compared against the P 2-approach to show the validity of the proposed method at low gas pressures
    corecore