324 research outputs found

    Development of novel ionization chambers for reference dosimetry in electron FLASH radiotherapy

    Full text link
    The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in ultra-high dose rate (UHDR) dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector).The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120Hz), pulse width (PW, 0.5-4us), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the dose per pulse (DPP), PRF, PW, dose rate, electric field strength, and electrode gap. The chamber response was found to be dependent on DPP and PW, whose dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger charge collection efficiency (CCE) as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1-5 Gy at PWs ranging from 0.5-4 {\mu}s, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. This study confirmed that the charge collection efficiency of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. The new finding of this study is that the PW dependence becomes negligible with reduced electrode spacing and increased electric field.Comment: 29 pages, 9 figure

    Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound

    Get PDF
    Purpose: Printing technology, capable of producing three‐dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D‐printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single‐photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of “printing” radioactive or nonradioactive solutions during the printing process. Methods: A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified; however, only 50 were classified as relevant for this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. Results: All 50 studies printed and scanned phantoms in either CT, PET, SPECT, mammography, MRI, and US—or a combination of those modalities. According to the literature, different parameters were evaluated depending on the imaging modality used. Almost all papers evaluated more than two parameters, with the most common being Hounsfield units, density, attenuation and speed of sound. Conclusions: The development of this field is rapidly evolving and becoming more refined. There is potential to reach the ultimate goal of using 3D phantoms to get feedback on imaging scanners and reconstruction algorithms more regularly. Although the development of imaging phantoms is evident, there are still some limitations to address: One of which is printing accuracy, due to the printer properties. Another limitation is the materials available to print: There are not enough materials to mimic all the tissue properties. For example, one material can mimic one property—such as the density of real tissue—but not any other property, like speed of sound or attenuation

    Stabilization exercises for the aging athlete

    Full text link

    Uncertainties in the Measurement and Dosimetry of External Radiation<b>, NCRP Report 158</b>

    No full text

    Hydroxide Ion Effects in Sensitivity and Supralinearity in Lithium Fluoride - Abstract only

    No full text
    corecore