46 research outputs found
Environments to support collaborative software engineering
With increasing globalisation of software production, widespread use of
software components, and the need to maintain software systems over long
periods of time, there has been a recognition that better support
for collaborative working is needed by software engineers.
In this paper, two approaches to developing
improved system support for collaborative software engineering are
described: GENESIS and OPHELIA.
As both projects are moving towards industrial trials and eventual publicreleases of their systems, this exercise of comparing and
contrasting our approaches has provided the basis for future
collaboration between our projects particularly in carrying out
comparative studies of our approaches in practical use
Knowledge Capture in CMM Inspection Planning: Barriers and Challenges
Coordinate Measuring Machines (CMM) have been widely used as a means of evaluating product quality and controlling quality manufacturing processes. Many techniques have been developed to facilitate the generation of CMM measurement plans. However, there are major gaps in the understanding of planning such strategies. This significant lack of explicitly available knowledge on how experts prepare plans and carry out measurements slows down the planning process, leading to the repetitive reinvention of new plans while preventing the automation or even semi-automation of the process. The objectives of this paper are twofold: (i) to provide a review of the existing inspection planning systems and discuss the barriers and challenges, especially from the aspect of knowledge capture and formalization; and (ii) to propose and demonstrate a novel digital engineering mixed reality paradigm which has the potential to facilitate the rapid capture of implicit inspection knowledge and explicitly represent this in a formalized way. An outline and the results of the development of an early stage prototype - which will form the foundation of a more complex system to address the aforementioned technological challenges identified in the literature survey - will be given
Environments to Support Collaborative Software Engineering
With increasing globalisation of software production, widespread use of software components, and the need to maintain software systems over long periods of time, there has been a recognition that better support for collaborative working is needed by software engineers. In this paper,
two approaches to developing improved system support for collaborative software engineering are described: GENESIS
and OPHELIA. As both project are moving towards industrial trials and eventual public releases of their systems, this exercise of comparing and contrasting our approaches has provided the basis for future collaboration between our projects particularly in carrying out comparative studies of our approaches in practical use
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
A multicentre, randomised controlled trial to compare the clinical and cost-effectiveness of Lee Silverman Voice Treatment versus standard NHS Speech and Language Therapy versus control in Parkinson’s disease: a study protocol for a randomised controlled trial
Abstract: Background: Parkinson’s disease (PD) affects approximately 145,519 people in the UK. Speech impairments are common with a reported prevalence of 68%, which increase physical and mental demands during conversation, reliance on family and/or carers, and the likelihood of social withdrawal reducing quality of life. In the UK, two approaches to Speech and Language Therapy (SLT) intervention are commonly available: National Health Service (NHS) SLT or Lee Silverman Voice Treatment (LSVT LOUD®). NHS SLT is tailored to the individuals’ needs per local practice typically consisting of six to eight weekly sessions; LSVT LOUD® comprises 16 sessions of individual treatment with home-based practice over 4 weeks. The evidence-base for their effectiveness is inconclusive. Methods/design: PD COMM is a phase III, multicentre, three-arm, unblinded, randomised controlled trial. Five hundred and forty-six people with idiopathic PD, reporting speech or voice problems will be enrolled. We will exclude those with a diagnosis of dementia, laryngeal pathology or those who have received SLT for speech problems in the previous 2 years. Following informed consent and completion of baseline assessments, participants will be randomised in a 1:1:1 ratio to no-intervention control, NHS SLT or LSVT LOUD® via a central computer-generated programme, using a minimisation procedure with a random element, to ensure allocation concealment. Participants randomised to the intervention groups will start treatment within 4 (NHS SLT) or 7 (LSVT LOUD®) weeks of randomisation. Primary outcome: Voice Handicap Index (VHI) total score at 3 months. Secondary outcomes include: VHI subscales, Parkinson’s Disease Questionnaire-39; Questionnaire on Acquired Speech Disorders; EuroQol-5D-5 L; ICECAP-O; resource utilisation; adverse events and carer quality of life. Mixed-methods process and health economic evaluations will take place alongside the trial. Assessments will be completed before randomisation and at 3, 6 and 12 months after randomisation. The trial started in December 2015 and will run for 77 months. Recruitment will take place in approximately 42 sites around the UK. Discussion: The trial will test the hypothesis that SLT is effective for the treatment of speech or voice problems in people with PD compared to no SLT. It will further test whether NHS SLT or LSVT LOUD® provide greater benefit and determine the cost-effectiveness of both interventions. Trial registration: International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID: 12421382. Registered on 18 April 2016
Recommended from our members
A multicentre, randomised controlled trial to compare the clinical and cost-effectiveness of Lee Silverman Voice Treatment versus standard NHS Speech and Language Therapy versus control in Parkinson’s disease: a study protocol for a randomised controlled trial
Abstract: Background: Parkinson’s disease (PD) affects approximately 145,519 people in the UK. Speech impairments are common with a reported prevalence of 68%, which increase physical and mental demands during conversation, reliance on family and/or carers, and the likelihood of social withdrawal reducing quality of life. In the UK, two approaches to Speech and Language Therapy (SLT) intervention are commonly available: National Health Service (NHS) SLT or Lee Silverman Voice Treatment (LSVT LOUD®). NHS SLT is tailored to the individuals’ needs per local practice typically consisting of six to eight weekly sessions; LSVT LOUD® comprises 16 sessions of individual treatment with home-based practice over 4 weeks. The evidence-base for their effectiveness is inconclusive. Methods/design: PD COMM is a phase III, multicentre, three-arm, unblinded, randomised controlled trial. Five hundred and forty-six people with idiopathic PD, reporting speech or voice problems will be enrolled. We will exclude those with a diagnosis of dementia, laryngeal pathology or those who have received SLT for speech problems in the previous 2 years. Following informed consent and completion of baseline assessments, participants will be randomised in a 1:1:1 ratio to no-intervention control, NHS SLT or LSVT LOUD® via a central computer-generated programme, using a minimisation procedure with a random element, to ensure allocation concealment. Participants randomised to the intervention groups will start treatment within 4 (NHS SLT) or 7 (LSVT LOUD®) weeks of randomisation. Primary outcome: Voice Handicap Index (VHI) total score at 3 months. Secondary outcomes include: VHI subscales, Parkinson’s Disease Questionnaire-39; Questionnaire on Acquired Speech Disorders; EuroQol-5D-5 L; ICECAP-O; resource utilisation; adverse events and carer quality of life. Mixed-methods process and health economic evaluations will take place alongside the trial. Assessments will be completed before randomisation and at 3, 6 and 12 months after randomisation. The trial started in December 2015 and will run for 77 months. Recruitment will take place in approximately 42 sites around the UK. Discussion: The trial will test the hypothesis that SLT is effective for the treatment of speech or voice problems in people with PD compared to no SLT. It will further test whether NHS SLT or LSVT LOUD® provide greater benefit and determine the cost-effectiveness of both interventions. Trial registration: International Standard Randomised Controlled Trials Number (ISRCTN) Registry, ID: 12421382. Registered on 18 April 2016
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
When the Sea meets City: Transformation towards a Smart Sea in Finland
The Baltic Sea is increasingly becoming a living laboratory for rapid prototyping and testing solutions from cleaner and safer shipping to remote and autonomous navigation. The maritime industry in Finland is rapidly undergoing digital transformation to make activities at sea smarter. A Smart Sea can be understood as an ecosystem across city and sea interface in which businesses, knowledge institutions, citizens, municipal agencies and government collaborate towards shared situational awareness and create value in multiple dimensions – economic, social and environmental. This article presents Smart Sea implementation journey in Finnish public sector through notable improvements and setbacks, and identifies larger transformation effects for the society
Legacy Information Systems and Business Process Change: A Patterns Perspective
Integration of technical systems with business processes, and coherent strategies for the development of both, have long been recognised as critical to the competitiveness of companies. However, as separate systems become integrated, dependencies are established that complicate future reengineering exercises. These internal dependencies increase the risk associated with change, promote incremental approaches to systems reengineering and hasten the emergence of legacy systems. Once established, these legacy systems not only represent an impediment to advancing the technology strategy, they may also lock in redundant business processes with a consequent erosion of competitiveness. Reengineering these legacy systems to improve competitiveness therefore requires both technical expertise in systems engineering and an understanding of what the business process is intended to achieve. Recent technical and business change drivers such as the \u27Year 2000 Problem\u27 (Y2K) and Economic and Monetary Union (EMU), however, exposed concerns that many organisations may lack even the required technical expertise. Clearly a demand for improving the capture and dissemination of systems reengineering expertise exists. One recent and promising approach to allowing transfer of expertise in well-defined contexts uses patterns. This paper explores patterns as a means of codifying and disseminating systems reengineering expertise. Through widening the definition of a legacy system to include the business process, we propose that patterns may provide a communication link between business and technology strategists that would help align their objectives and improve the sustainability of any resulting competitive advantage