89 research outputs found

    Activation of mitogen-activated protein kinases by peroxisome proliferator-activated receptor ligands: an example of nongenomic signaling

    Get PDF
    ABSTRACT Peroxisome proliferator-activated receptors (PPARs) are a subfamily of nuclear hormone receptors that function as ligandactivated transcription factors to regulate lipid metabolism and homeostasis. In addition to their ability to promote gene transcription in a PPAR-dependent manner, ligands for this receptor family have recently been shown to induce mitogen-activated protein kinase (MAPK) phosphorylation. It is noteworthy that the transcriptional changes induced by PPAR ligands can be separated into distinct PPAR-and MAPK-dependent signaling pathways, suggesting that MAPKs alone mediate some of the effects of PPAR agonists in a nongenomic manner. This review will highlight recent studies that elucidate the nongenomic mechanisms of PPAR ligand-induced MAPK phosphorylation. The potential relevance of MAPK signaling in PPAR biology is also discussed

    Src-Mediated Phosphorylation of the Tyrosine Phosphatase PRL-3 Is Required for PRL-3 Promotion of Rho Activation, Motility and Invasion

    Get PDF
    The metastasis-associated tyrosine phosphatase PRL-3/PTP4A is upregulated in numerous cancers, but the mechanisms modulating PRL-3 activity other than its expression levels have not been investigated. Here we report evidence for both Src-dependent tyrosine phosphorylation of PRL-3 and Src-mediated regulation of PRL-3 biological activities. We used structural mutants, pharmacological inhibitors and siRNA to demonstrate Src-dependent phosphorylation of endogenous PRL-3 in SW480 colon cancer cells. We also demonstrated that PRL-3 was not tyrosine phosphorylated in SYF mouse embryo fibroblasts deficient in Src, Yes and Fyn unless Src was re-expressed. Further, we show that platelet-derived growth factor (PDGF) can stimulate PRL-3 phosphorylation in a Src-dependent manner. Finally, we show that PRL-3-induced cell motility, Matrigel invasion and activation of the cytoskeleton-regulating small GTPase RhoC were abrogated in the presence of the phosphodeficient PRL-3 mutant Y53F, or by use of a Src inhibitor. Thus, PRL-3 requires the activity of a Src kinase, likely Src itself, to promote these cancer-associated phenotypes. Our data establish a model for the regulation of PRL-3 by Src that supports the possibility of their coordinate roles in signaling pathways promoting invasion and metastasis, and supports simultaneous use of novel molecularly targeted therapeutics directed at these proteins

    Loss of the Nutrient Sensor Tas1R3 Leads to Reduced Bone Resorption

    Get PDF
    Background: The Taste receptor, type 1 (TAS1R) family of heterotrimeric G protein-coupled receptors participates in monitoring energy and nutrient needs. TAS1R member 3 (TAS1R3) either recognizes amino acids such as glycine and L-glutamate or sweet molecules such as sucrose and fructose when dimerized with TAS1R member 1 (TAS1R1) or TAS1R member 2 (TAS1R2), respectively. Loss of TAS1R3 expression can cause impaired mTORC1 signaling and increased autophagy, indicating that signaling through this receptor is critical for assessing nutrient needs. Recently, it was reported that global deletion of TAS1R3 expression in Tas1R3 mutant mice leads to increased cortical bone mass and trabecular remodeling but the underlying cellular mechanism leading to this phenotype remains unclear. Results: To address this open question, we quantified bone turnover markers in serum from 20-week-old wild type and Tas1R3 mutant mice and found that levels of the resorption marker Collagen Type I C-telopeptide (CTx) were reduced on average by \u3e60% in the absence of TAS1R3 expression. Levels of the bone formation marker Procollagen Type I N-terminal Propeptide (P1NP) tend to be higher in Tas1R3 mutant mice but this finding did not reach statistical significance (

    Dependence of Peroxisome Proliferator-activated Receptor Ligand-induced Mitogen-activated Protein Kinase Signaling on Epidermal Growth Factor Receptor Transactivation

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma ligands have recently been shown to induce activation of mitogen-activated protein kinases (MAPKs), which in turn phosphorylate PPARs, thereby affecting transcriptional activity. However, the mechanism for PPAR ligand-dependent MAPK activation is unclear. In the current study, we demonstrate that various PPARalpha (nafenopin) and gamma (ciglitazone and troglitazone) agonists rapidly induced extracellular signal-regulated kinase (Erk) and/or p38 phosphorylation in rat liver epithelial cells (GN4). The selective epidermal growth factor receptor (EGFR) kinase inhibitors, PD153035 and ZD1839 (Iressa), abolished PPARalpha and gamma agonist-dependent Erk activation. Consistent with this, PPAR agonists increased tyrosine autophosphorylation of the EGFR as well as phosphorylation at a putative Src-specific site, Tyr845. Experiments with the Src inhibitor, PP2, and the antioxidant N-acetyl-L-cysteine revealed critical roles for Src and reactive oxygen species as upstream mediators of EGFR transactivation in response to PPAR ligands. Moreover, PPARalpha and gamma ligands increased Src autophosphorylation as well as kinase activity. EGFR phosphorylation, in turn, led to Ras-dependent Erk activation. In contrast, p38 activation by PPARalpha and gamma ligands occurred independently of Src, oxidative stress, the EGFR, and Ras. Interestingly, PPARalpha and gamma agonists caused rapid activation of proline-rich tyrosine kinase or Pyk2; Pyk2 as well as p38 phosphorylation was reduced by intracellular Ca2+ chelation without an observable effect on EGFR and Erk activation, suggesting a possible role for Pyk2 as an upstream activator of p38. In summary, PPARalpha and gamma ligands activate two distinct signaling cascades in GN4 cells leading to MAPK activation

    Regulation of Rnd3 Localization and Function By PKCα-Mediated Phosphorylation

    Get PDF
    The Rnd proteins (Rnd1, Rnd2 and Rnd3/RhoE) form a distinct branch of the Rho family of small GTPases. Altered Rnd3 expression causes changes in cytoskeletal organization and cell cycle progression. Rnd3 functions to decrease RhoA activity, but how Rnd3 itself is regulated to cause these changes is still under investigation. Unlike other Rho family proteins, Rnd3 is regulated not by GTP/GDP cycling, but at the level of expression and by posttranslational modifications such as prenylation and phosphorylation. We show here that, upon PKC agonist stimulation, Rnd3 undergoes an electrophoretic mobility shift and its subcellular localization becomes enriched at internal membranes. These changes are blocked by inhibition of conventional PKC isoforms and do not occur in PKCα-null cells or to a nonphosphorylatable mutant of Rnd3. We further show that PKCα directly phosphorylates Rnd3 in an in vitro kinase assay. Additionally, we provide evidence that the phosphorylation status of Rnd3 has a direct effect on its ability to block signaling from the Rho-ROCK pathway. These results identify an additional mechanism of regulation and provide clarification of how Rnd3 modulates Rho signaling to alter cytoskeletal organization

    Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption

    Get PDF
    The taste receptor type 1 (TAS1R) family of heterotrimeric G protein-coupled receptors participates in monitoring energy and nutrient status. TAS1R member 3 (TAS1R3) is a bi-functional protein that recognizes amino acids such as L-glycine and L-glutamate or sweet molecules such as sucrose and fructose when dimerized with TAS1R member 1 (TAS1R1) or TAS1R member 2 (TAS1R2), respectively. It was recently reported that deletion of TAS1R3 expression in Tas1R3 mutant mice leads to increased cortical bone mass but the underlying cellular mechanism leading to this phenotype remains unclear. Here, we independently corroborate the increased thickness of cortical bone in femurs of 20-week-old male Tas1R3 mutant mice and confirm that Tas1R3 is expressed in the bone environment. Tas1R3 is expressed in undifferentiated bone marrow stromal cells (BMSCs) in vitro and its expression is maintained during BMP2-induced osteogenic differentiation. However, levels of the bone formation marker procollagen type I N-terminal propeptide (PINP) are unchanged in the serum of 20-week-old Tas1R3 mutant mice as compared to controls. In contrast, levels of the bone resorption marker collagen type I C-telopeptide are reduced greater than 60% in Tas1R3 mutant mice. Consistent with this, Tas1R3 and its putative signaling partner Tas1R2 are expressed in primary osteoclasts and their expression levels positively correlate with differentiation status. Collectively, these findings suggest that high bone mass in Tas1R3 mutant mice is due to uncoupled bone remodeling with reduced osteoclast function and provide rationale for future experiments examining the cell-type-dependent role for TAS1R family members in nutrient sensing in postnatal bone remodeling

    Hyperpolarized 13 C spectroscopy and an NMR-compatible bioreactor system for the investigation of real-time cellular metabolism

    Get PDF
    The purpose of this study was to combine a three-dimensional NMR-compatible bioreactor with hyperpolarized 13C NMR spectroscopy in order to probe cellular metabolism in real time. JM1 (immortalized rat hepatoma) cells were cultured in a three-dimensional NMR-compatible fluidized bioreactor. 31P spectra were acquired before and after each injection of hyperpolarized [1-13C] pyruvate and subsequent 13C spectroscopy at 11.7 T. 1H and two-dimensional 1H-1H-total correlation spectroscopy spectra were acquired from extracts of cells grown in uniformly labeled 13C-glucose, on a 16.4 T, to determine 13C fractional enrichment and distribution of 13C label. JM1 cells were found to have a high rate of aerobic glycolysis in both two-dimensional culture and in the bioreactor, with 85% of the 13C label from uniformly labeled 13C-glucose being present as either lactate or alanine after 23 h. Flux measurements of pyruvate through lactate dehydrogenase and alanine aminotransferase in the bioreactor system were 12.18 ± 0.49 nmols/sec/108 cells and 2.39 ± 0.30 nmols/sec/108 cells, respectively, were reproducible in the same bioreactor, and were not significantly different over the course of 2 days. Although this preliminary study involved immortalized cells, this combination of technologies can be extended to the real-time metabolic exploration of primary benign and cancerous cells and tissues prior to and after therapy

    Metabolic assessment of a novel chronic myelogenous leukemic cell line and an imatinib resistant subline by 1H NMR spectroscopy

    Get PDF
    The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
    corecore