7 research outputs found

    A rigorous model of reflex function indicates that position and force feedback are flexibly tuned to position and force tasks

    Get PDF
    This study aims to quantify the separate contributions of muscle force feedback, muscle spindle activity and co-contraction to the performance of voluntary tasks (“reduce the influence of perturbations on maintained force or position”). Most human motion control studies either isolate only one contributor, or assume that relevant reflexive feedback pathways during voluntary disturbance rejection tasks originate mainly from the muscle spindle. Human ankle-control experiments were performed, using three task instructions and three perturbation characteristics to evoke a wide range of responses to force perturbations. During position tasks, subjects (n = 10) resisted the perturbations, becoming more stiff than when being relaxed (i.e., the relax task). During force tasks, subjects were instructed to minimize force changes and actively gave way to imposed forces, thus becoming more compliant than during relax tasks. Subsequently, linear physiological models were fitted to the experimental data. Inhibitory, as well as excitatory force feedback, was needed to account for the full range of measured experimental behaviors. In conclusion, force feedback plays an important role in the studied motion control tasks (excitatory during position tasks and inhibitory during force tasks), implying that spindle-mediated feedback is not the only significant adaptive system that contributes to the maintenance of posture or force

    Comparison of isoprene chemical mechanisms under atmospheric night-time conditions in chamber experiments : Evidence of hydroperoxy aldehydes and epoxy products from NO3 oxidation

    Get PDF
    The gas-phase reaction of isoprene with the nitrate radical (NO3) was investigated in experiments in the outdoor SAPHIR chamber under atmospherically relevant conditions specifically with respect to the chemical lifetime and fate of nitrato-organic peroxy radicals (RO2). Observations of organic products were compared to concentrations expected from different chemical mechanisms: (1) the Master Chemical Mechanism, which simplifies the NO3 isoprene chemistry by only considering one RO2 isomer; (2) the chemical mechanism derived from experiments in the Caltech chamber, which considers different RO2 isomers; and (3) the FZJ-NO3 isoprene mechanism derived from quantum chemical calculations, which in addition to the Caltech mechanism includes equilibrium reactions of RO2 isomers, unimolecular reactions of nitrate RO2 radicals and epoxidation reactions of nitrate alkoxy radicals. Measurements using mass spectrometer instruments give evidence that the new reactions pathways predicted by quantum chemical calculations play a role in the NO3 oxidation of isoprene. Hydroperoxy aldehyde (HPALD) species, which are specific to unimolecular reactions of nitrate RO2, were detected even in the presence of an OH scavenger, excluding the possibility that concurrent oxidation by hydroxyl radicals (OH) is responsible for their formation. In addition, ion signals at masses that can be attributed to epoxy compounds, which are specific to the epoxidation reaction of nitrate alkoxy radicals, were detected. Measurements of methyl vinyl ketone (MVK) and methacrolein (MACR) concentrations confirm that the decomposition of nitrate alkoxy radicals implemented in the Caltech mechanism cannot compete with the ring-closure reactions predicted by quantum chemical calculations. The validity of the FZJ-NO3 isoprene mechanism is further supported by a good agreement between measured and simulated hydroxyl radical (OH) reactivity. Nevertheless, the FZJ-NO3 isoprene mechanism needs further investigations with respect to the absolute importance of unimolecular reactions of nitrate RO2 and epoxidation reactions of nitrate alkoxy radicals. Absolute concentrations of specific organic nitrates such as nitrate hydroperoxides would be required to experimentally determine product yields and branching ratios of reactions but could not be measured in the chamber experiments due to the lack of calibration standards for these compounds. The temporal evolution of mass traces attributed to product species such as nitrate hydroperoxides, nitrate carbonyl and nitrate alcohols as well as hydroperoxy aldehydes observed by the mass spectrometer instruments demonstrates that further oxidation by the nitrate radical and ozone at atmospheric concentrations is small on the timescale of one night (12gh) for typical oxidant concentrations. However, oxidation by hydroxyl radicals present at night and potentially also produced from the decomposition of nitrate alkoxy radicals can contribute to their nocturnal chemical loss

    Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2⁺ → 17/2⁺)/B(E2:17/2⁺ → 13/2⁺) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed

    Carbonate and silicate intercomparison materials for cosmogenic 36Cl measurements

    Get PDF
    Two natural mineral separates, labeled CoCal-N and CoFsp-N, have been prepared to serve as intercomparison material (ICM) for in situ-produced cosmogenic 36Cl and natural chlorine (Clnat) analysis. The sample CoCal-N is derived from calcite crystals in a Namibian lag deposit, while the sample CoFsp-N is derived from a single crystal of alkali-feldspar from a Namibian pegmatite. The sample preparation took place at the University of Cologne and a rotating splitter was used to obtain homogeneous splits of both ICMs. Forty-five measurements of CoCal-N (between 1 and 16 per facility) and forty-four measurements of CoFsp-N (between 2 and 20 per facility) have been undertaken by ten target preparation laboratories measured by seven different AMS facilities. The internal laboratory scatter of the 36Cl concentrations indicates no overdispersion for half of the laboratories and 3.9 to 7.3% (1σ) overdispersion for the others. We show that the CoCal-N and CoFsp-N splits are homogeneous regarding their 36Cl and Clnat concentrations. The grand average (average calculated from the average of each laboratory) yields initial consensus 36Cl concentrations of (3.74 ± 0.10) × 106 at 36Cl/g (CoCal-N) and (2.93 ± 0.07) × 106 at 36Cl/g (CoFsp-N) at 95% confidence intervals. The coefficient of variation is 5.1% and 4.2% for CoCal-N and CoFsp-N, respectively. The Clnat concentration corresponds to the lower and intermediate range of typical rock samples with (0.73 ± 0.18) µg/g in CoCal-N and (73.9 ± 6.8) µg/g in CoFsp-N. We discuss the most relevant points of the sample preparation and measurement and the chlorine concentration calculation to further approach inter-laboratory comparability. We propose to use continuous measurements of the ICMs to provide a valuable quality control for future determination of 36Cl and Clnat concentrations
    corecore