446 research outputs found

    The Current State of Peritoneal Dialysis

    Get PDF
    Technical innovations in peritoneal dialysis (PD), now used widely for the long-term treatment of ESRD, have significantly reduced therapy-related complications, allowing patients to be maintained on PD for longer periods. Indeed, the survival rate for patients treated with PD is now equivalent to that with in-center hemodialysis. In parallel, changes in public policy have spurred an unprecedented expansion in the use of PD in many parts of the world. Meanwhile, our improved understanding of the molecular mechanisms involved in solute and water transport across the peritoneum and of the pathobiology of structural and functional changes in the peritoneum with long-term PD has provided new targets for improving efficiency and for intervention. As with hemodialysis, almost half of all deaths on PD occur because of cardiovascular events, and there is great interest in identifying modality-specific factors contributing to these events. Notably, tremendous progress has been made in developing interventions that substantially reduce the risk of PD-related peritonitis. Yet the gains have been unequal among individual centers, primarily because of unequal clinical application of knowledge gained from research. The work to date has further highlighted the areas in need of innovation as we continue to strive to improve the health and outcomes of patients treated with PD

    A protein kinase a-independent pathway controlling aquaporin 2 trafficking as a possible cause for the syndrome of inappropriate antidiuresis associated with polycystic kidney disease 1 haploinsufficiency.

    Get PDF
    Renal water reabsorption is controlled by vasopressin (AVP) which binds to V2 receptors resulting in PKA activation, phosphorylation of AQP2 at serine 256 (pS256) and translocation to the plasma membrane. Besides S256, AVP causes dephosphorylation of S261. Recent studies showed that cyclin-dependent kinases can phosphorylate S261 AQP2 peptides in vitro. In an attempt to investigate the possible role of cdks on AQP2 phosphorylation, we identified a new PKA-independent pathway regulating AQP2 trafficking. In ex-vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific cdks inhibitor, increased pS256 and decreased pS261. The changes in AQP2 phosphorylation were paralleled by an increase in cell surface AQP2 expression and osmotic water permeability in the absence of forskolin stimulation. Of note, R-roscovitine didn’t alter cAMP-dependent PKA activity. Because phosphorylation results from the balance between kinase and phosphatase activity, we evaluated the possible contribution of protein phosphatases PP1, PP2A and PP2B. Of these, R-roscovitine treatment specifically reduced PP2A protein expression and activity in MDCK cells. Interestingly, in PKD1+/- mice displaying a syndrome of inappropriate antidiuresis with high level of pS256 despite unchanged AVP and cAMP, we found a reduced PP2A expression and activity and reduced pS261. Similarly to what previously found in PKD1+/- mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that a reduced activity of PP2A, secondary to reduced intracellular Ca2+ levels, promotes AQP2 trafficking independently of the AVP-PKA axis. This pathway may be relevant for explaining pathological states characterized by inappropriate AVP secretion and positive water balance

    Nitric oxide synthase isoforms play distinct roles during acute peritonitis

    Get PDF
    Background. Acute peritonitis is the most frequent complication of peritoneal dialysis (PD). Increased nitric oxide (NO) release by NO synthase (NOS) isoforms has been implicated in acute peritonitis, but the role played by the NOS isoforms expressed in the peritoneum is unknown

    P2Y2 receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells

    Get PDF
    Luminal nucleotide stimulation is known to reduce Na+ transport in the distal nephron. Previous studies suggest that this mechanism may involve the thiazide-sensitive Na+-Cl− cotransporter (NCC), which plays an essential role in NaCl reabsorption in the cells lining the distal convoluted tubule (DCT). Here we show that stimulation of mouse DCT (mDCT) cells with ATP or UTP promoted Ca2+ transients and decreased the expression of NCC at both mRNA and protein levels. Specific siRNA-mediated silencing of P2Y2 receptors almost completely abolished ATP/UTP-induced Ca2+ transients and significantly reduced ATP/UTP-induced decrease of NCC expression. To test whether local variations in the intracellular Ca2+ concentration ([Ca2+]i) may control NCC transcription, we overexpressed the Ca2+-binding protein parvalbumin selectively in the cytosol or in the nucleus of mDCT cells. The decrease in NCC mRNA upon nucleotide stimulation was abolished in cells overexpressing cytosolic PV but not in cells overexpressing either a nuclear-targeted PV or a mutated PV unable to bind Ca2+. Using a firefly luciferase reporter gene strategy, we observed that the activity of NCC promoter region from −1 to −2,200bp was not regulated by changes in [Ca2+]i. In contrast, high cytosolic calcium level induced instability of NCC mRNA. We conclude that in mDCT cells: (1) P2Y2 receptor is essential for the intracellular Ca2+ signaling induced by ATP/UTP stimulation; (2) P2Y2-mediated increase of cytoplasmic Ca2+ concentration down-regulates the expression of NCC; (3) the decrease of NCC expression occurs, at least in part, via destabilization of its mRNA

    The correlation potential of magnetic susceptibility and outcrop gamma-ray logs at Tournaisian-Viséan boundary sections in western Europe

    Get PDF
    We have measured five deep-water carbonate and carbonate-siliciclastic sections at the Tournaisian-Visean (Tn/V) boundary in western Europe, using petrophysical outcrop logging techniques (gamma-ray spectrometry /GRS/ and magnetic susceptibility /MS/). The aim was to trace correlatable log patterns across the flanks of the London-Brabant Massif from eastern Ireland to western Germany. Both GRS and MS logging proved useful for long-distance (up to similar to 1000 km) correlation. The log patterns can be interpreted in terms of sea-level fluctuations. A late Tournaisian regression, a sequence boundary at the Tn/V boundary, early Visean lowstand systems tract and an overlying transgressive to regressive succession can be identified from the GRS and MS logs. The Tn/V sequence boundary can be correlated with exposure features and karstic surfaces in the up-dip shallow-water settings at the boundary between sequence 4 and 5 of Hance et al. (2001, 2002). This indicates that sea-level fluctuations around the Tn/V boundary were synchronous and traceable on the flanks of the London-Brabant Massif. The GRS-based logging has a greater correlation potential than MS as it can be applied in a broad spectrum of facies and depositional settings. In certain sections, the MS signal shows an increasing trend during transgression and a decreasing during regression, which is opposite to the MS paradigm from shallow-water carbonate platform settings. These trends are assumed to result from landward/basinward facies shifts of low-productivity carbonate ramp systems. Lowstand shedding of carbonate tempestites and turbidites results in low MS values while during sea-level rise the ramp systems backstep, developing retrograding facies successions in their distal parts, which are associated with upward-increasing MS values

    A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion

    Get PDF
    Heterozygous mutations in UMOD\textit{UMOD} encoding the urinary protein uromodulin are the most common genetic cause of autosomal dominant tubulointerstitial kidney disease (ADTKD). We describe the exceptional case of a patient from a consanguineous family carrying a novel homozygous UMOD\textit{UMOD} mutation (p.C120Y) affecting a conserved cysteine residue within the EGF-like domain III of uromodulin. Comparison of heterozygote and homozygote mutation carriers revealed a gene dosage effect with unprecedented low levels of uromodulin and aberrant uromodulin fragments in the urine of the homozygote proband. Despite an amplified biological effect of the homozygote mutation, the proband did not show a strikingly more severe clinical evolution nor was the near absence of urinary uromodulin associated with urinary tract infections or kidney stones.J.A.S. is supported by the Kidney Research Fund and the Medical Research Council (MR/M012212/1). S.A.R. is a Kidney Research UK Post-Doctoral Fellow. O.D. is supported by grants from the European Community’s Seventh Framework Programme (305608 EURenOmics), the Swiss National Centre of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH) programme, the Swiss National Science Foundation (31003A_169850) and the Rare Disease Initiative Zu¨rich (Radiz), a clinical research priority program of the University of Zurich, Switzerland. E.O. is supported by the Fonds National de la Recherche Luxembourg (6903109) and the University Research Priority Programme ‘Integrative Human Physiology, ZIHP’ of the University of Zurich

    The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin.

    Get PDF
    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins
    corecore