1,320 research outputs found

    Social Work Practice in Health Care: An Ethnic Sensitive Approach

    Get PDF
    The relationship between ethnicity and modes of response to illness has been well documented. One example is stoicism as contrasted with volatile behavior in response to pain of different groups. Another is increasing awareness of the fact that non-traditional healers (eog., espiritistas, cuaranderos) are used extensively by members of various ethnic groups. Insufficient attention has been paid to how such knowledge can be incorporated in social work practice. This paper reviews prevailing social work interventive procedures and skills and suggests needed adaptations if social work practice is to be more sensitive and responsive to different health behaviors and beliefs of various ethnic groups. Consideration is given to various views of illness causation, response, cure and death. In this context the potential for varying modes of cooperation with nontraditional healers is explored

    Ethnic Sensitive Social Work Practice: The State of the Art

    Get PDF
    The social work literature of the past ten years has paid increasing attention to the ideological, theoretical and practice issues related to ethnic sensitive practice. Major focus has been on the life styles, needs and oppression of people of color, with minimal attention paid to other ethnic groups. A literature focused on adapting prevailing practice modalities to work with diverse groups is beginning to emerge

    Tests of Dynamical Flux Emergence as a Mechanism for CME Initiation

    Full text link
    Current coronal mass ejection (CME) models set their lower boundary to be in the lower corona. They do not calculate accurately the transfer of free magnetic energy from the convection zone to the magnetically dominated corona because they model the effects of flux emergence using kinematic boundary conditions or simply assume the appearance of flux at these heights. We test the importance of including dynamical flux emergence in CME modeling by simulating, in 2.5D, the emergence of sub-surface flux tubes into different coronal magnetic field configurations. We investigate how much free magnetic energy, in the form of shear magnetic field, is transported from the convection zone to the corona, and whether dynamical flux emergence can drive CMEs. We find that multiple coronal flux ropes can be formed during flux emergence, and although they carry some shear field into the corona, the majority of shear field is confined to the lower atmosphere. Less than 10% of the magnetic energy in the corona is in the shear field, and this, combined with the fact that the coronal flux ropes bring up significant dense material, means that they do not erupt. Our results have significant implications for all CME models which rely on the transfer of free magnetic energy from the lower atmosphere into the corona but which do not explicitly model this transfer. Such studies of flux emergence and CMEs are timely, as we have new capabilities to observe this with Hinode and SDO, and therefore to test the models against observations

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe

    20 and 3D Numerical Simulations of Flux Cancellation

    Get PDF
    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading

    Comparison of Stochastic Methods for the Variability Assessment of Technology Parameters

    Get PDF
    This paper provides and compares two alternative solutions for the simulation of cables and interconnects with the inclusion of the effects of parameter uncertainties, namely the Polynomial Chaos (PC) method and the Response Surface Modeling (RSM). The problem formulation applies to the telegraphers equations with stochastic coefficients. According to PC, the solution requires an expansion of the unknown parameters in terms of orthogonal polynomials of random variables. On the contrary, RSM is based on a least-square polynomial fitting of the system response. The proposed methods offer accuracy and improved efficiency in computing the parameter variability effects on system responses with respect to the conventional Monte Carlo approach. These approaches are validated by means of the application to the stochastic analysis of a commercial multiconductor flat cable. This analysis allows us to highlight the respective advantages and disadvantages of the presented method
    • …
    corecore