30 research outputs found

    Oxidative Stability of Polyunsaturated Edible Oils Mixed With Microcrystalline Cellulose

    Get PDF
    The oxidative stability of mixtures of edible oils containing polyunsaturated fatty acids (PUFA) and microcrystalline cellulose (MCC) was investigated. The mixtures studied consisted of oils of either camelina (CAM), cod liver (CLO), or salmon (SO) mixed with either colloidal or powdered MCC. A 50:50 (w/w) ratio of oil:MCC resulted in an applicable mixture containing high levels of PUFA edible oil and dietary fiber. The oxidative stability of the formulated mixtures and the pure oils was investigated over a period of 28 days. The peroxide value (PV) was assessed as a parameter for primary oxidation products and dynamic headspace gas chromatography mass spectrometry (GC/MS) was used to analyze secondary volatile organic compounds (VOC). CAM and the respective mixtures were oxidatively stable at both 4 and 22 °C during the storage period. The marine oils and the respective mixtures were stable at 4 °C. At 22 °C, an increase in hydroperoxides was found, but no increase in VOC was detected during the time-frame investigated. At 42 °C, prominent increases in PV and VOC were found for all oils and mixtures. Hexanal, a common marker for the degradation of n-6 fatty acids, propanal and 2,4-heptadienal (E,E), common indicators for the degradation of n-3 fatty acids, were among the volatiles detected in the headspace of oils and mixtures. This study showed that a mixture containing a 50:50 ratio of oil:MCC can be obtained by a low-tech procedure that does not induce oxidation when stored at low temperatures during a period of 1 month

    Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids

    Get PDF
    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids -linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.publishedVersio

    Thermal management of machine compartment in a built-in refrigerator

    No full text
    In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably

    Characterization of Pseudo-Lignin from Steam Exploded Birch

    Get PDF
    There is a growing interest in a more wholesome utilization of biomass as the need for greener chemistry and non-mineral oil-based products increases. Lignin is the largest renewable resource for aromatic chemicals, which is found in all types of lignocellulosic biomass. Steam-explosion of lignocellulosic biomass is a useful pretreatment technique to make the polymeric material more available for processing. However, this heat-based pretreatment is known to result in the formation of pseudo-lignin, a lignin-like polymer made from carbohydrate degradation products. In this work, we have analyzed steam-exploded birch with a varying severity factor (3.1−5.0) by pyrolysis−gas chromatography−mass spectrometry, 2D-NMR, and Fourier transform infrared spectroscopy. The main results reveal a consumption of acetic acid at higher temperatures, with the increase of furan components in the pyrolyzate. The IR and NMR spectral data support these results, and there is a reason to believe that the conditions for humin formation are accomplished under steam explosion. Pseudo-lignin seems to be a humin-like compound.Characterization of Pseudo-Lignin from Steam Exploded BirchpublishedVersio

    Thermal management of machine compartment in a built-in refrigerator

    No full text
    In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably
    corecore