867 research outputs found

    A Scalable Low-Cost-UAV Traffic Network (uNet)

    Full text link
    This article proposes a new Unmanned Aerial Vehicle (UAV) operation paradigm to enable a large number of relatively low-cost UAVs to fly beyond-line-of-sight without costly sensing and communication systems or substantial human intervention in individual UAV control. Under current free-flight-like paradigm, wherein a UAV can travel along any route as long as it avoids restricted airspace and altitudes. However, this requires expensive on-board sensing and communication as well as substantial human effort in order to ensure avoidance of obstacles and collisions. The increased cost serves as an impediment to the emergence and development of broader UAV applications. The main contribution of this work is to propose the use of pre-established route network for UAV traffic management, which allows: (i) pre- mapping of obstacles along the route network to reduce the onboard sensing requirements and the associated costs for avoiding such obstacles; and (ii) use of well-developed routing algorithms to select UAV schedules that avoid conflicts. Available GPS-based navigation can be used to fly the UAV along the selected route and time schedule with relatively low added cost, which therefore, reduces the barrier to entry into new UAV-applications market. Finally, this article proposes a new decoupling scheme for conflict-free transitions between edges of the route network at each node of the route network to reduce potential conflicts between UAVs and ensuing delays. A simulation example is used to illustrate the proposed uNet approach.Comment: To be submitted to journal, 21 pages, 9 figure

    Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics

    Get PDF
    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example

    On a switching control scheme for nonlinear systems with ill-defined relative degree

    Get PDF
    This paper discusses the applicability of a switching control scheme for a nonlinear system with ill-defined relative degree. The control scheme switches between exact and approximate input-output linearisation control laws. Unlike a linear system under a switching control scheme, the equilibria of a nonlinear system may change with the switching. It is pointed out that this is not sufficient to cause instability. When the region of the approximate linearisation control law is attractive to the exact zero dynamics, it is possible that the closed-loop system under the switching control scheme is still stable. The results in this paper shows that the switching control scheme proposed in Tomlin and Sastry (Systems Control Lett. 35(3) (1998) 145) is applicable for a wider class of nonlinear systems

    Towards integrating chalcogenide based phase change memory with silicon microelectronics

    Get PDF
    The continued dominance of floating gate technology as the premier non-volatile memory (NVM) technology is expected to hit a roadblock due to issues associated with its inability to catch up with CMOS scaling. The uncertain future of floating gate memory has led to a host of unorthodox NVM technologies to surface as potential heirs. Among the mix is phase change memory (PCM), which is a non-volatile, resistance variable, memory technology wherein the state of the memory bit is defined by the resistance of the memory material. This research study examines novel, bilayer chalcogenide based materials composed of Ge-chalcogenide (GeTe or Ge2Se3) and Sn-chalcogenide (SnTe or SnSe) for phase change memory applications and explores their integration with CMOS technology. By using a layered arrangement, it is possible to induce phase change response in materials, which normally do not exhibit such behavior, and thus form new materials which may have lower threshold voltage and programming current requirements. Also, through the incorporation of a metal containing layer, the phase transition characteristics of the memory layer can be tailored in order to obtain in-situ, a material with optimized phase change properties. Using X-ray diffraction (XRD) and time resolved XRD, it has been demonstrated that stacked phase change memory films exhibit both structural and compositional dependency with annealing temperature. The outcome of the structural transformation of the bottom layer, is an annealing temperature dependent residual stress. By the incorporation of a Sn layer, the phase transition characteristics of Ge-chalcogenide thin films can be tuned. Clear evidence of thermally induced Ge, Sn and chalcogen inter-diffusion, has been discerned via transmission electron microscopy and parallel electron energy loss spectroscopy. The presence of Al2O3 as capping layer has been found to mitigate volatilization and metallic Sn phase separation at high temperatures. Two terminal PCM cells employing these bilayers have been designed, fabricated and tested. All devices exhibit threshold switching and memory switching behavior. By the application of suitable voltage programming pulses, RESET state switching can be accomplished in these devices, thus demonstrating single bit memory functionality. A process for integrating bilayer PCM technology with 2 µm CMOS has been designed and developed. The baseline RIT CMOS process has been modified to incorporate 12 levels of photolithography, 3 levels of metal and the addition of PCM as a BEOL process. On electrical testing, NMOS connected PCM devices exhibit switching behavior. The effect of the state (SET/RESET) of the series connected PCM cell on the drain current of the NMOS has also been investigated. It is determined that threshold switching of the PCM cell is essential in order to observe any change in MOS drain current with variation in drain voltage. Thus, successful integration of bilayer PCM with CMOS has been demonstrated
    • …
    corecore