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Abstract - A technique to achieve output tracking for nonminimum phase nonlinear systems with non-

hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that

achieve exact-tra@ing) with approximation techniques (that modify the internal dynamics) to circumvent the

nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently

available stable inversion techniques. The theory is developed for nonlinear systems and the method is

applied to a two-cart with inverted-pendulum example.
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1 Introduction

Precision output tracking controllers are needed to meet increasingly stringent performance requirements

in applications like flexible structures, aircraft guidance, robotics, and manufacturing systems. While ex-

act tracking of minimum phase systems is relatively easy to achieve through approaches like input-output

linearization [1], output tracking of nonminimum phase systems tends to be more challenging due to fun-

damental performance limitations on transient tracking performance [2]. This poor transient performance

has been mitigated by using pre-actuation in the stable-inversion based approaches [3, 4]. However, the

preactuation time (during which most of the preactuation control effort is required) depends on the unstable

poles of the linearized internal dynamics - the preactuation time increases as the unstable poles approach the

imaginary axis. In the limiting case, with the poles on the imaginary axis (nonhyperbolic internal dynamics),
presently available inversion-based techniques are not applicable and the effective preactuation time tends

to become infinite. The present work extends previous results for linear systems in [5] to output tracking of
nonlinear nonminimum phase systems, which have nonhyperbolic internal dynamics.

Output tracking has a long history marked by the development of regulator theory for linear systems

by Francis and Wonham [6] and the generalization to the nonlinear case by Byrnes and Isidori [7]. These
approaches asymptotically track an output from a class of exosystem-generated outputs. Further, extensions

to the Byrnes-Isidori regulator have been described in [8]. The main problem with the application of these

techniques to the output tracking of nonlinear systems is computational. While the linear regulator is

designed by solving a manageable set of linear equations, the nonlinear regulator design requires the nontrivial

solution of a first order partial differential algebraic equation [9, 10]. In contrast, inversion-based approaches

avoid this computational difficulty and trade it to solve the exact tracking problem for a single desired
output trajectory rather than solve the asymptotic tracking for a class of outputs. Another problem with

the regulator approach is that the exosystem states are often switched to describe the desired output - this

leads to transient tracking-errors after the switching instants. Such switching caused transient errors can

be avoided by using inversion-based approaches to output tracking [3, 11]. Thus, it is advantageous to use

inversion-based output tracking when precision tracking of a particular output trajectory is required.

Inversion, which is key to our approach, was restricted to causal inverses of minimum phase systems in
the early works by Silverman and by Hirschorn (e.g., [12, 13]) because these approaches lead to unbounded

inverses in the nonminimum phase case. Di Benedetto and Lucibeilo [14] considered the inversion of time

varying nonminimum phase systems with a choice of the system's initial conditions. Rather than choose

initial conditions, preactuation was used by noncausal stable inversion techniques developed in [3, 4, 15].
Such noncausal inverses, which require preactuation, have been successfully applied to the output tracking

of flexible structures [16, 17], and aircraft and air traffic control [4, 18]. There is, however, a fundamental

limitation to the presently available inversion techniques - they are only applicable if the internal dynamics is
hyperbolic, and inversion-based output tracking has been a challenge for systems with nonhyperbolic internal
dynamics.

Although Huang [8] has proposed some sufficient conditions for developing a regulator for systems with

nonhyperbolic internal dynamics, the regulator design remains computationally difficult. There are also

several approximation based output tracking techniques, where the central philosophy is to replace the

internal dynamics with a dynamics that provides satisfactory behavior, and then to develop the controller

based on the altered system [19, 20, 21]. The techniques most relevant to this paper are developed by

Gurumoorthy and Sanders [19], and by Gopalswamy and Hedrick [21] - output redefinition (or modification)
is used in these to approximate the unstable internal dynamics with a stable system. Such approximation

based approaches are integrated, in this paper, with stable-inversion based techniques to achieve inversion

of linear systems with nonhyperbolic internal dynamics in [5]. However, the present technique does not use

output modification to stabilize the internal dynamics, rather output modification is only used to remove

the nonhyperbolicity. Additionally, for near nonhyperbolic systems, the present approach allows a tradeoff
between the precision-tracking and the amount of pre-actuation-time that is needed in the control effort.

This tradeoff between stable-inversion and approximation of the unacceptable internal-dynamics has been

studied for helicopter-hover control in [5]. The present work extends the results for linear-systems in [5] to
nonlinear systems.

We begin with a background on the stable-inversion based output tracking technique, and computational
issues are presented in Section 3. The technique is applied to an example in Section 4, and conclusions are
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2 The Stable Inversion problem

2.1 Inversion-Based Output Tracking Scheme

Here we describe how the inversion approach is used to develop output tracking controllers.

system described by
_(_) = fix(t)] +g[z(t)] _(t)

Consider a

(1)
= h

where y(t) = [yl(O,Y2(t),...,yp(t)] T is the output, with the same number of inputs and outputs, i.e.,

u(t), y(_) G _P, and z(t) G _" is the state. The functions/(.),g(.) and h(-) are assumed to be sufficiently

smooth with f(O) = 0 (i.e., x = 0 is an equilibrium point) and h(O) = O.

Let Yd(') be the desired output trajectory to be tracked. In the inversion-based approach we, first, find

a bounded, nominal input-state trajectory, [u/y(.), Zre](')] that satisfies the system equations (1) and yields
the desired output exactly, i.e.,

kre1(t) = f[xreY(t)] + g[x_eI(t)] uyy(t) _ Vt E (- ,oo) (2)J

and, second, we use the exact-output yielding input trajectory, ulI(.), as feedforward and the system is
stabilized by using feedback. It is noted that in this output tracking scheme, the feedforward input u1i (.) is

computed off-line.

In the absence of modeling errors, initial condition errors, and external disturbances, exact-tracking can

be achieved by the use of feedforward alone. If the system (1) is stable (or stabilized with feedback before

the inversion is applied) then standard Lyapunov arguments [22] can be used to show that, with the use of

feedforward, z(t) --+ Z_el (t) and y(t) --+ yd(t) as t --+ c_ and output tracking is achieved [3, 15]. The feedback
scheme can also include integrals of the tracking error [22] to obtain zero steady-state errors (see Figure 1).

While stabilization of the system can be achieved through standard techniques, the main challenge is to find

the inverse input-state trajectory [u]l (.), Xre! (')] - especially for systems with nonminimum phase dynamics.
This paper addresses the issue of generating the inverse input-state trajectory for a system and can be used

in conjunction with any feedback stabilization scheme.

Dcs_dOar_t d laversi_ I r_e_°_'rd +_7_ System ]Traj©clory,_ I --1 (off-line) u. -t- l [

Controller

Y
v

Figure 1. The Control Scheme

2.2 The Internal Dynamics

In this subsection, it is shown that finding the inverse input-state trajectory is equivalent to finding bounded

solutions to the system's internal dynamics.

Assumption 1 System (I) has a well defined vector relative degree, r := [r_, r2, ..., rv].

The well-defined vector relative degree assumption enables the system equations to be rewritten, through a
co-ordinate transformation

• (t) = = , (3)
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in the following form [1, 21]

(l(t) = A¢,(z(t) + A¢2(2(t)

&(t) = s_[((t),,7(_)] + s2[((t),,7(t)]u(t) (4)

¢7(t) = s3[((t),o(t)] + s,[((t),,_(t)b,(t)

where _ represents the output, along with its time derivatives, ( is partitioned as (l(t) " (2(t) and is

given by

___ _ d',-_ d'_-" d',-_ • d',-' d',-' d',-' (5)Yl at do "" dr,t-2 Y2 ... d,-PT"_2-_Y2..- d'_--'_Yp _Yl d_--v"fzr2-_Y2... dt,p-,Yp •

Further A G is a block-diagonal matrix, A G = diag[Aa, A2, A3 .... , Ap], with each block consisting of zeros

except for ones on the super-diagonal (Ak is a (rk -- 1) × (rk -- 1) matrix for each 1 < k < p). A G is a matrix
whose elements are zeros except for elements on the (rl + r2 +... + rk - k)-th row and k-th column, which

are ones (for all 1 _< k _< p). Further, from Assumption (1), s2(., .) is invertible in a neighborhood of the

origin, and since the origin is assumed to be an equilibrium point, we also have sl (0, 0) = 0, s3(0, 0) = 0.
Note that the desired ¢'(.) is known when the desired output trajectory Yd(') and its time derivatives are

specified. This desired ¢(.) is defined as (a('). If exact output tracking is achieved (i.e., if ((t) = (d(t)) then
the control law for maintaining exact tracking can be written as, from equation (4),

u(_) [s4C_(t),r/(/)]} -I [&,_(t) - _,[¢_(t),_(0]] (6)

which results in state-equations of the form

_(t) = _'d(t) (7)

iT(t) = sz[_(t),rT(t)] + s,[((t),rT(t)]u(t)

= s3[c(O,_(t)] + ,,[c(t), 0(t)][,2(c_(_),o(0)]-_ [&,d(t) - ,_ [C_(t),O(t)]]

(8)

This is the inverse system and equation (8) is referred to as the internal dynamics. Solving the internal

dynamics is key to finding the inverse input state trajectories. If a bounded solution, r/_(.), to the internal

dynamics (8) can be found, then the feedforward input can be found through equation (6) as

u//(t) = [s2(G(t), r/d(t))]-' [('2,d(O - sl ((d(t), r/d(t))] (9)

and the reference state trajectory can be found as

z,,/(t) = T[CaCt),rldCt)] [ r/dCt)('dCt)] , (10)

Thus, finding a bounded solution, _Td('), to the internal dynamics (Equation 8) is key to finding the inverse
(bounded) input-state trajectories (Equations 9 and 10) which are needed to implement the inversion-based

output-tracking scheme shown in Figure 1.

2.3 Modified Internal Dynamics

Standard inversion schemes [12, 13] that integrate (forward in time) the internal dynamics (8) lead to un-

bounded solutions if the origin of the internal dynamics is unstable (nonminimum phase systems). Noncausal

inversion (e.g., [3]) leads to bounded but noncausal solution of the internal dynamics. While significant im-

provement in output tracking performance is possible, such stable-inversion techniques are not applicable to
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systems with nonhyperbolic internaldynamics. In thissubsectiona compromise between stableinversionand

approximation-based inversionschemes isproposed. The key isto modify the internaldynamics by giving

up exact output tracking- enough to remove the nonhyperbolicity,and then to apply stable-inversion.The

differencebetween the proposed technique and other approximate techniquesisthat the internaldynamics

isperturbed only to remove the nonhyperbolicity,and not to stabilizethe internaldynamics as in other

approximation schemes [19,21].

To modify the inversesystem an extra term, v(t),isadded to the controllaw (6) as follows

,,(t)= [s_[q(t),,7(t)]]-'[&_(t)- s,[q(t),,7(t)]+ v(O] (11)

Note that the modified input does not attempt to achieve exact tracking of the desired output (i.e., _'(.) = (:d(')
is not required) Therefore, the modification, v(t), Of the control law can be used to modify the internal
dynamics. With this control law, the system equation (4) becomes

_l(t) = A¢,Cl(t) % AC_C2(t )

_:(t) = _2,d(t)+ v(t)

_(t) = s3[C(t),0(t)] + s,[C(t),0(t)][s_[C(t),_(0]]-' [¢_,,(t)- s, [¢(t),_(t)] + v(t)]

For ease in notation, we define the tracking error, e¢(t), as

e¢(t) := [e¢,(t)] := [,l(t)--,1,d(t ) ]
eel(t) ¢2(0 ¢2,d(t) j

and rewrite Equation (12) as

(12)

_¢,(t) = A¢,ef,(t) + A¢_ec,(t)

_¢_(t) = ,,(t)

¢1(t) =

where

.m

s3[e¢(t) + Cd(t), o(t)] +

_,[ec(t)+ ¢_(t),o(t)][_[ec(t)+ ¢_(t),v(t)]]-' [&_(t) - s, [e¢(t)+ ¢_(t),_(t)]+ v(t)]j

_[ec(t), ,7(t), Yd(t), _(t)]

(13)

Yd(t) :-- [ _d(t)&,_(t) ]

If v(t) = 0 then Equation (13) represents the inverse-system, which has to be solved to find the exact-

tracking inverse input-state trajectories. However, the internal dynamics part of equation (13),

_(t) = ._[ec(t), r}(t), Yd(t), O] ,

is nonhyperbolic and may not have a bounded solution (see the Example in Section 4) - thus the inversion

problem may not. have a bounded solution. Even when bounded solutions exist for the nonhyperbolic internal

dynamics, currently available computational techniques for stable-inversion cannot be directly used since they
require hyperbolicity of the internal dynamics [3, 4]. Our approach is to appropriately choose v(.) to remove

the nonhyperbolicity of the inverse system (13), which includes the internal dynamics. We begin with the
following assumption.

Assumption 2 System (I) is controllable in the first approximation [I].

The above assumption implies that the modified inverse system is also controllable in the first approximation

since the difference between the original system (1) and the modified internal dynamics (13) is only a



co-ordinatetransformationanda staticstate-feedback(see[21]for a similarargumentusedfor output
redefinition).Next,a feedbackof theform

v(t) = F [ e`(t) ]tl(t) (14)

is chosen such that the modified inverse system is hyperbolic - i.e., all poles on the imaginary axis are

moved. Note that this change to a hyperbolic system can be achieved through an arbitrarily small F since

nonhyperbolicity is not a structurally stable property. With this control law Equation (13) becomes

_¢,(t) = Aoe¢,(t )+ A¢_ef_(t)

_(_) = F[ e¢(t)]_(t) (15)

_(t) = _ (e¢(t), o(_),Yd(t),F [ eC(t)0(t)])

which is re-written in a simplified form as

_(_) = s (e¢(t), _(t), Y_(t)).

Next, stable inversion of the modified inverse system (16) is carried out [3].

(16)

3 Computation of the Inverse

This section discusses the computation of the inverse for the hyperbolic, modified, inverse-system. First, an

iterative algorithm is presented - one of the steps involves finding bounded solutions to a linear (unstable)
system. Second, the explicit technique to find bounded solutions is presented, and the amount of preactuation

required for implementing the inversion-based controller is discussed. We begin with the algorithm to find

bounded solutions to the modified internal dynamics [3].

3.1 Iterative Algorithm to find Inverse

• Step 1

Rewrite the modified inverse (16) as

at ,7(t) ,7(t) +

(17)

where the first term on the right hand side (r.h.s.) is the linearization of s(-,., .) with respect to the
first two variables, e¢(-) and r/(.), and the second term on the r.h.s, represents a perturbation. This

motivates the following iterative solution of the internal dynamics.

. Step 2

We begin with [e¢(t) _7(t)]T = 0 and then, at at each iteration in the following scheme, the bounded
solution of the following linearized system-equation is found.

where

and N =

d

1,2,3 ....

[ ] [ ]
r_(t) N+_ "- r/u+_(t)

(18)

(19)
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3.2 Bounded Solution to Unstable Linear System

In the above iterations, solving equation (18) implies finding a bounded solution to a linear, hyperbolic (but
potentially unstable) system - this is described next.

We begin by decoupling the linear system (18) into stable (z,) and unstable (z_) subsystems. Since the

modified internal dynamics is hyperbolic, there exits a decoupling transformation U such that equation (18)
can be re-written as

Z(s,N+l)(t) ---- SsZ(s,N+l)(t) +G, YN(Tt)

Z'(u,N+l)(t) = Suz(u,N+l)(t) + GuYN(t)

where

and

ZN+l(t) := [ Z(s,N+1)(t) ] := U [ e(n,N+U(t)z(_,N+l)(t) _N+l(t) ]"

YN(t) := {s(e(o,lv)(t),rIN(t),Yd(t)) -- S [ e¢(t)_(t)]_V}

An approach to find bounded solutions is to enforce the boundary conditions that z(,,N+l)(--oo) = 0 and
z(_,N+l)(oo) = 0. This leads to unique bounded solutions by flowing the stable subsystem forward in time

and flowing the unstable system backward in time - this yields (see [15] for computational issues)

z(,,N+,)(t) = ft_o_ eS'(t-T)a, YN(r)dr Vt E (--c_,e_),

z(u,N+1)(t) = ftooe-S"('-t)GuYN(r)dr Vt E (-oo, oo).

Next, a change of co-ordinates yields the bounded solution to (18) as

(20)

[.,,,>]= ,,1>r/(t) N+I Z(u,N+l)(t) N+I"

3.3 Convergence of Iterative Algorithm

The following Theorem states that, as N -+ co, the solutions of the above iterative algorithm converge to a
bounded solution of the modified inverse system (16).

Theorem Let the hyperbolic, modified, internal dynamics s(-,., .) and its linearization S satisfy the fol-

lowing Lipschitz like condition on a neighborhood of the origin, (0,0,0),

< I,', II o_ - o_ IIo_ + K_ iIg_ - g_ IIo_ (22)

Then, provided Kl, K2 and II Yd(') I1_ are small, the iteration scheme converges to a solution of the modified
inverse system (16), i.e,

asN--r°c'and [ e(¢'d)]0_

Proof

See [3, 4].

)7' N )/d

satisfies the modified inverse system.

[]

Thus, slable inversion technique is applied after removing the nonhyperbolicity in the internal dynamics.
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Remark 1 The conditions in the theorem are sufficient conditions .for finding bounded solutions to the

internal dynamics. They are not, however, necessary for the existence of bounded solutions to the internal

dynamics - bounded solutions can exist even when the internal dynamics are non-hyperbolic. Further, S in

the above theorem can also be chosen to be different from the linearization of the nonlinearity s, however,

additional conditions have to be imposed (see, [3], Condition 1 in Definition 5).

This completes the inversion-technique for nonminimum phase systems with nonhyperbolic internal dy-

namics. To summarize, the reference state trajectory is found as (from Equation 10)

where

Od(t) '

_d(t) := _d(t) + e(¢,d)(t)

and the feedforward input, u11(.), is found from equation (11) and equation (14) as

uyy(t) = [s2[(d(t),rtd(t)]] -1 [(2,d(t)--sl[(d(t),rJ(t)]q-F [ e(Cd)(t)r/d(t) ]1 (23)

The inverse input-state trajecotry, [ulf (.), Zref(-)] , is then used with feedback stabilization to obtain output
tracking [3].

3.4 Error Analysis

The following Lemma establishes an upper bound on the tracking error, e((,d), for a given choice of feedback,
F, that removes the nonhyperbolicity of the inverse system (15).

Lemma 1 Let,

6(t) = U_1 [ l(t)es°t 0 J0 -l(-t)e -s"t

where I(.) is the unit. step function, S is defined from equation (17) as

S= F

where S is the linearization of _(.,., .) with respect, to the variables, e_(-) and 7(') (see equation (15)), and

S., and Su represent, the decomposition of linearized inverse system into stable and unstable parts by the

co-ordinate transformation, U, as discussed in Subsection 3.2. Further, let

II_()Itl = nmax[[ _id(')II1-
I ,J

Then the tracking error for a particular choice of F can be bounded as

II _(')11_ K=ll Ya(')Iloo
II ee,(t)11¢¢ -<

1 - hhll _(')II1

Proof This follows from Theorem 3.6 in [23]. •

3.5 Preactuation Time

Stable-inversion techniques overcome fundamental limitations on transient tracking performance of non-

minimum phase systems [2] by using preactuation. However, the preactuation time (i.e., when most of the

preactuation effort is required) tends to be unacceptably large if the unstable poles of the linearized, modified

internal dynamics are close to the imaginary axis - this dependence is established in the following Lemma.

g
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Lemma 2

Let

• all the unstable poles of linearized, modified inverse system (eigenvalues of 84) lie to the right, in the

complex plane, of the line Real(s) = a for some positive a, and

• the support of Yd(') lie in [to, _) for some tQ.

Then there exists a positive scalar, M, such that the bounded solution to the internal dynamics (defined by

the Theorem) satisfies

e(¢,d)(t) Me,(t-to)
II ,Jd(t) I1 o <

for all time, t, before the start of the maneuver at to.

Proof Since the maneuver starts at to, any solution to the modified internal dynamics (16) satisfies the

autonomous equation,
I'I

= (24)
for all t < to. Further, any bounded solution to the autonomous equation must lie on the unstable manifold

before the start of the maneuver. The rate of convergence to zero as time tends to -oc, of solutions that
lie on the unstable manifold of the nonlinear modified inverse system, directly depends on the location of

poles of the linearized dynamics. In particular, the rate of convergence depends on the unstable poles of

the linearization (which are the eigenvalues of S,_). The existence of a positive scalar M that satisfies the

statement of the lemma follows from the saddle-point property (see [24] Theorem 6.1, and [25] Theorem

19.9). •

The present technique also provides a way to reduce the preactuation time for systems with near nonhy-

perbolic internal dynamics. The Lemma states that the desired state-trajectory exponentially tends to zero

as we go back in time before the start of the maneuver at to. Then the continuity of the input with respect

to the state (smoothness of f, g and h, and the well defined relative degree assumption) implies that the
preactuation input also tends to zero exponentially. The rate at which the preactuation becomes zero can

be increased by moving the unstable poles of the linearized, modified inverse system (i.e., the eigenvalues

of S_) away from the imaginary axis - by appropriately choosing F in equation (14). This reduction in

preactuation-effort is obtained at the expense of exact output tracking (see [5] for a linear example).

4 Example

/ I,l
//

::._._,::.::.... - .........................
::_:::_,::%!i::i::ii_::..... x i::::ii::i_i!::_i_::i::.::.:..._i_:::.-_::_i__i|

I_ _:_::::'::-'-:::.:-::!_i::;::.::! :..:-::.:::_:-'.s:_.-:._::.::::::':::::',<'!:_."

Figure 2. Example: Two Carts and Inverted Pendulum

Here, the inversion-technique is applied to an example two-cart and pendulum system shown in Figure

2. The inverted pendulum on a cart has been well studied in literature (see, for example, [19]), and has

nonminimum phase dynamics - the internal dynamics is hyperbolic. An extra cart is added here, which

introduces nonhyperbolicity in the internal dynamics. The input to the system is the applied force, F(t),

8



andtheoutputistheposition,xx(t),ofthecartcarryingtheinvertedpendulum(seeFigure2).Theequation
of motionfor thesystemcanbeobtainedas

(M + m)_l(t) + mlcosO(t) O(t)

r.1coso(t) _, (t) + ml2 _(t)
M_=(t)

which can be rewritten in state-space form as

= F(t) + mlO 2(t) sin O(t) - K (xl(t) - z2(t))

= mgl sin O(t)

= -K (x2(t) - x,(t))
(25)

_,(t) = ¢_(t)

_2(t) = _ [F(t)/m + lr/4(t)_sin0a(t)

_,(t) = 05(t)
ij2(t) = (K/M) (¢1(0 - rh(t))
ij3(t) = o.(t)

//4(t) = _l[-r/4(t)2sinr/a(t)cos03(t)

+ _ {(M + m)g sin r/s(t) - F(t) cos r/s(t)

J

- K/m ((, (t) - '1, (t)) - g cos r/z(t) sin r/3(t)]
J

+ K (¢1(t)- ox(t))coso_(t)}]

(26)

where (, := z,, _ := _/,, rh := x2, r/_ := z'2, r/3 := 0, and 04 := 0, and 7(r/3(t)) := M/m+ [sinr/3(t)] 2

Given the desired output trajectory profile, the input that maintains exact tracking (i.e., which maintains
((t) = (a(t)) is obtained from equation (26) as

F(t) -" m_(F]3)_l,d(t ) -- ml[r]4(t)] 2 sin r/3(t) + K [¢, (t) - r/, (t)] + rag[cos r/3(t)] sin r/3(t)

With this exact tracking control law, the linearized internal dynamics (represented by r/), is given by

o_(t) o a o o o,(t) o o

d O2(t) -KIM 0 0 0 r12(t ) KIM 0 [Xl,a(t) ]
d-_ ,_(t) = 0 0 0 1 r/_(t) + 0 0 _,,_(t) (27)

t J
r/a(/) 0 0 9/1 0 r/4(t) 0 -1/l

Note that. the linearization has two poles at zlzv/_M on the imaginary axis (in the complex plane) which
correspond to the cart. dynamics (z2, ks) with zl fixed; i.e., a spring-mass system. The other two poles are

at -t-V_ which correspond to the iinearization of the inverted pendulum dynamics (0, 0). The two poles

on the imaginary axis lead to nonhyperbolic behavior and stable-inversion techniques fail - this corresponds
to the case which requires infinite pre-actuation.

Remark 2 Note that the nonhyperbolic spring-mass system will not have a bounded solution if the desired

output ezcites the spring-mass system at its resonance frequency. Thus the nonhyperbolicity of the internal
dynamics can imply that exact-tracking cannot be achieved for some desired-output trajectories.

By modifying the desired trajectory, the internal dynamics can be approximated by a hyperbolic system,

for which existing stable-inversion techniques are applicable. This modification is achieved by adding an
extra term v(-) to the control as follows

wf(t) = F(t)

The modified inverse system becomes

= roT(r/3)[Xl,d(t)+ v(t)] -- rnl [r/4(t)]2sinr/3(t)
+h"[(x(t) - ,71(t)] + my[cosr/3(t)]sinrt3(t) (28)

_¢,(t)

0_(t)
,)2(t)
0_(t)
0_(t)

= v(t)
-- r/2(t)
= -K/Mr/, + N/M [x,,a(t) + e¢, (t)]
= r/4(t)
= g/lsin r/3(t) - 1/lcos,Tz(t)[_i,a(t) + v(t)]

(29)

B

B

i_liii



|

where

ec(t):= [e_,(t)[ [_l(t)-xl,a(t)]e_,(t) := _:_(t) :_],,(t)
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Figure 3. Results of Inversion

The additional input, v, is chosen (v = F[e_ qT]T) to remove the nonhyperbolicity. This can be achieved,
for example, by pole-placement algorithms. Simulation results are presented next. The system parameters

were chosen, for the simulation, as K = lON/m, M = 1Kg, l = 9.8rn, g = 9.8rn/s 2 and the F used in
simulations is

F=[-4.52e-2 -3.04e-1 5e-4 1.5e-3 0 0].

This F removes the nonhyperbolicity of the internal dynamics and stable inversion of the modified inverse

system is carried out using the algorithm in Section 3. Simulation results are presented in Figure 3, which
shows the error caused in output-tracking due to redefinition of the output trajectory. The tracking error is

less than 1% of the maximum value of the desired output (see Figure 3) - the rate at which the error goes

to zero depends on the choice of F. The internal dynamics ( xu, 8 ) is also shown in Figure 3. Note that

the nonhyperbolicity is circumvented and stable inversion is achieved with a relatively minor modification

of the output.

5 Conclusion

A technique to achieve output tracking for nonminimum phase nonlinear systems with nonhyperbolic internal

dynamics was presented. The approach integrated stable inversion techniques (that achieve exact tracking)
with approximation approaches (that modify the internal dynamics) to remove the nonhyperbolicity of the

internal dynamics. It was shown that, by giving up some of the precision in tracking, it is possible to achieve

stable inversion of nonlinear nonminimum phase systems with nonhyperbolic internal dynamics.
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