8 research outputs found
Enhanced biofilm and extracellular matrix production by chronic carriage versus acute isolates of Salmonella Typhi.
Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage
In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state
It has been known for decades that purified small subunits of the ribosome can interconvert between active and inactive conformations in experiments performed under simplified conditions, but the physiological relevance of this switch has remained unclear. We probed the structure of ribosomal RNA in healthy living cells and discovered that stably assembled 30S subunits exist predominantly in the inactive conformation, with structural differences localized in the functionally important decoding region. Disrupting the ability to interconvert between active and inactive conformations compromised translation in cells. In-cell RNA structure probing supports a model in which “inactive” 30S subunits comprise an abundant in-cell state that regulates ribosome function
The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates
Extracellular DNA (eDNA) is a critical component of the extracellular matrix of bacterial biofilms that protects the resident bacteria from environmental hazards which includes imparting significantly greater resistance to antibiotics and host immune effectors. eDNA is organized into a lattice-like structure, stabilized by the DNABII family of proteins, known to have high affinity and specificity for HJs. Accordingly, we demonstrated that the branched eDNA structures present within the biofilms formed by NTHI in the middle ear of the chinchilla in an experimental otitis media model, and in sputum samples that contain multiple mixed bacterial species and were recovered from cystic fibrosis (CF) patients possess a HJ-like configuration. Next, we showed that the prototypic E. coli HJ-specific DNA-binding protein RuvA could be functionally exchanged for DNABII proteins in the stabilization of biofilms formed by three diverse human pathogens, UPEC, NTHI and Staphylococcus epidermidis. Importantly, while replacement of DNABII proteins within the NTHI biofilm matrix with RuvA was shown to retain similar mechanical properties when compared to the control NTHI biofilm structure, we also demonstrated that biofilm eDNA matrices stabilized by RuvA could be subsequently undermined upon addition of the HJ resolvase complex, RuvABC, which resulted in significant biofilm disruption. Collectively, our data suggested that nature has recapitulated a functional equivalent of the HJ recombination intermediate to maintain the structural integrity of bacterial biofilms
Recommended from our members
Serum biomarkers correlated with liver stiffness assessed in a multicenter study of pediatric cholestatic liver disease
Background and aimsDetailed investigation of the biological pathways leading to hepatic fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for pediatric cholestasis.Approach and resultsA targeted enzyme-linked immunosorbent assay-based panel of nine biomarkers (lysyl oxidase, tissue inhibitor matrix metalloproteinase (MMP) 1, connective tissue growth factor [CTGF], IL-8, endoglin, periostin, Mac-2-binding protein, MMP-3, and MMP-7) was examined in children with biliary atresia (BA; n = 187), alpha-1 antitrypsin deficiency (A1AT; n = 78), and Alagille syndrome (ALGS; n = 65) and correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations among LSM and endoglin ( p = 0.04) and IL-8 ( p < 0.001) and MMP-7 ( p < 0.001) in participants with BA. The best prediction model for LSM in BA using clinical and lab measurements had an R2 = 0.437; adding IL-8 and MMP-7 improved R2 to 0.523 and 0.526 (both p < 0.0001). In participants with A1AT, CTGF and LSM were negatively correlated ( p = 0.004); adding CTGF to an LSM prediction model improved R2 from 0.524 to 0.577 ( p = 0.0033). Biomarkers did not correlate with LSM in ALGS. A significant number of biomarker/lab correlations were found in participants with BA but not those with A1AT or ALGS.ConclusionsEndoglin, IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, whereas CTGF inversely correlates with LSM in participants with A1AT; these biomarkers appear to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of change in these biomarkers over time and as predictors of clinical outcomes will be important