7 research outputs found

    Rumor Detection on Twitter Using a Supervised Machine Learning Framework

    Full text link
    This article describes how a rumor can be defined as a circulating unverified story or a doubtful truth. Rumor initiators seek social networks vulnerable to illimitable spread, therefore, online social media becomes their stage. Hence, this misinformation imposes colossal damage to individuals, organizations, and the government, etc. Existing work, analyzing temporal and linguistic characteristics of rumors seems to give ample time for rumor propagation. Meanwhile, with the huge outburst of data on social media, studying these characteristics for each tweet becomes spatially complex. Therefore, in this article, a two-fold supervised machine-learning framework is proposed that detects rumors by filtering and then analyzing their linguistic properties. This method attempts to automate filtering by training multiple classification algorithms with accuracy higher than 81.079%. Finally, using textual characteristics on the filtered data, rumors are detected. The effectiveness of the proposed framework is shown through extensive experiments on over 10,000 tweets.</p

    Benign multicystic peritoneal mesothelioma: a case report

    No full text
    Free-floating peritoneal masses found during laparotomy should arouse a suspicion of benign multicystic peritoneal mesothelioma and they must be removed and subjected to histopathological examination and immunochemical staining to ascertain their benign nature. The objective of the study was to report a rare case of benign multicystic peritoneal mesotheliomas. We report an incidental finding of multiple free-floating peritoneal masses in a pregnant primigravida woman with a normal antenatal course who underwent a cesarean section in a rural hospital setting in India for fetal distress. The masses were removed from the peritoneal cavity during the surgery and subjected to histopathological examination and found to be benign multicystic peritoneal mesotheliomas. Immunohistochemistry of the cysts revealed that the mesothelial cells lining the cysts were positive for calretinin and WT1 and negative for CD31.</jats:p

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore