261 research outputs found

    Modulation of Cardiac Performance by Motor Protein Gene Transfer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75444/1/annals.1420.011.pd

    An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis

    Get PDF
    Background Individuals who rapidly develop hyperthermia during heat exposure (heat-intolerant) are vulnerable to heat associated illness and injury. We recently reported that heat intolerant mice exhibit complex alterations in stress proteins in response to heat exposure. In the present study, we further explored the role of genes and molecular networks associated with heat tolerance in mice. Methodology Heat-induced physiological and biochemical changes were assessed to determine heat tolerance levels in mice. We performed RNA and microRNA expression profiling on mouse gastrocnemius muscle tissue samples to determine novel biological pathways associated with heat tolerance. Principal Findings Mice (n = 18) were assigned to heat-tolerant (TOL) and heat-intolerant (INT) groups based on peak core temperatures during heat exposures. This was followed by biochemical assessments (Hsp40, Hsp72, Hsp90 and Hsf1 protein levels). Microarray analysis identified a total of 3,081 mRNA transcripts that were significantly misregulated in INT compared to TOL mice (p\u3c0.05). Among them, Hspa1a, Dnajb1 and Hspb7 were differentially expressed by more than two-fold under these conditions. Furthermore, we identified 61 distinct microRNA (miRNA) sequences significantly associated with TOL compared to INT mice; eight miRNAs corresponded to target sites in seven genes identified as being associated with heat tolerance pathways (Hspa1a, Dnajb1, Dnajb4, Dnajb6, Hspa2, Hspb3 and Hspb7). Conclusions The combination of mRNA and miRNA data from the skeletal muscle of adult mice following heat stress provides new insights into the pathophysiology of thermoregulatory disturbances of heat intolerance

    Temporal patterns of gene expression after acute hindlimb ischemia in mice insights into the genomic program for collateral vessel development

    Get PDF
    AbstractObjectivesWe sought to understand the genomic program leading to collateral vessel formation.BackgroundRecently, technology has advanced to the point that it is now possible to elucidate the large array of genes that must be expressed, as well as the temporal expression pattern, for the development of functionally important collateral vessels. In this investigation, we used deoxyribonucleic acid array expression profiling to determine the time course of differential expression of 12,000 genes after femoral artery ligation in C57BL/6 mice.MethodsRibonucleic acid was extracted from the adductor muscle, which showed no signs of ischemia. Sampling was at baseline, 6 h, and 1, 3, 7, and 14 days after femoral artery ligation or sham operation.ResultsFemoral artery ligation caused the differential expression (>2-fold) of 783 genes at one or multiple time points: 518 were induced and 265 were repressed. Cluster analysis generated four temporal patterns: 1) early upregulated (6 to 24 h)—immediate early transcriptional factors, angiogenesis, inflammation, and stress-related genes; 2) mid-phase upregulated (day 3)—cell cycle and cytoskeletal and inflammatory genes; 3) late upregulated (days 7 to 14)—angiostatic, anti-inflammatory, and extracellular matrix-associated genes; and 4) downregulated—genes involved in energy metabolism, water channel, and muscle contraction. Microarray data were validated using quantitative reverse transcription polymerase chain reaction.ConclusionsThis study documents the large number of genes whose differential expression and temporal functional clustering appear to contribute to collateral formation. These results can serve as a genomic model for arteriogenesis and as a database for developing new therapeutic strategies

    Characterization of the ZBTB42 gene in humans and mice

    Get PDF
    A 12 kb haplotype upstream of the key signaling protein gene, AKT1, has been associated with insulin resistance and metabolic syndrome (Devaney et al. 2010). The region contains the first exon and promoter sequences of AKT1, but also includes the complete transcript unit for a highly conserved yet uncharacterized zinc finger-containing protein (ZBTB42). One of the component SNPs of the 12 kb haplotype metabolic syndrome haplotype changes a conserved amino acid in the predicted ZBTB42 protein, increasing the potential significance of the ZBTB42 transcript unit for contributing to disease risk. Using RT-PCR of human and mouse cells, we verified that the two exon ZBTB42 was expressed and correctly spliced in human skeletal muscle, and murine C2C12 cells. Production of peptide antibodies showed the expected protein in human (47 kD) and mouse (49 kD) immunoblots, and murine tissue distribution showed strongest expression in muscle and ovary. Immunostaining showed nuclear localization of the ZBTB42 protein in human muscle. Confocal imaging analyses of murine muscle showed ZBTB42 distributed in the nucleoplasm, with particular enrichment in nuclei underlying the neuromuscular junctions. The genetic association data of metabolic syndrome, coupled with the molecular characterization of the ZBTB42 transcript unit and encoded protein presented here, suggests that ZBTB42 may be involved in metabolic syndrome phenotypes

    Are Immune Modulating Single Nucleotide Polymorphisms Associated with Necrotizing Enterocolitis?

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48-29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56-32.52). Neonates with TGFβ-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08-0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 - 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09-19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFβ-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC

    Genomics in premature infants: A non-invasive strategy to obtain high-quality DNA

    Get PDF
    We used a cost-effective, non-invasive method to obtain high-quality DNA from buccal epithelial-cells (BEC) of premature infants for genomic analysis. DNAs from BEC were obtained from premature infants with gestational age ≤ 36 weeks. Short terminal repeats (STRs) were performed simultaneously on DNA obtained from the buccal swabs and blood from the same patient. The STR profiles demonstrated that the samples originated from the same individual and exclude any contamination by external DNAs. Whole exome sequencing was performed on DNAs obtained from BEC on premature infants with and without necrotizing enterocolitis, and successfully provided a total number of reads and variants corroborating with those obtained from healthy blood donors. We provide a proof of concept that BEC is a reliable and preferable source of DNA for high-throughput sequencing in premature infants

    The angiotensin-converting enzyme insertion/deletion polymorphism rs4340 associates with habitual physical activity among European American adults.

    Get PDF
    BACKGROUND: The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4340) (ACE DIP) accounts for half of the variability in plasma ACE concentrations. ACE has been widely studied for its influence on sports performance; however, research on its influence in physical activity is limited and inconsistent. We examined the influence of the ACE DIP on physical activity among 461 European Americans. METHODS: Subjects completed the Paffenbarger Physical Activity Questionnaire for weekly walking distance. Multivariate analysis of covariance (MANCOVA) tested log-transformed differences in weekly walking distance among ACE DIP genotypes (II, ID, DD) with gender as a fixed factor, and age and body mass index (BMI) as covariates. Because we found a significant ACE DIPxBMI interaction (P = 0.03), we categorized the sample by normal weight (NW: BMI RESULTS: NW adults with ACE II walked 15.8 ± 11.1 km/week, ID 13.2 ± 10.6 km/week, and DD 17.9 ± 13.0 km/week, with ID walking less than II (P = 0.03) and DD (P = 0.01). OW adults with ACE II walked 16.7 ± 12.6 km/week, ID 13.8 ± 11.6 km/week, and DD 9.7 ± 9.0 km/week, with DD walking less than II (P = 0.02). Weekly walking distance was 8.2 ± 2.4 km/week less among OW adults with ACE DD than NW (P = 0.02). CONCLUSION: BMI interacted with ACE DD such that OW walked ~8.2 km/week less than NW, potentially equating to a body weight differential of ~3.5 kg annually
    corecore