119 research outputs found

    The Effect of Production of Selected Agriculture Products and Money Supply on GDP of Agriculture Sector in Malaysia

    Get PDF
    Agriculture sector plays the vital role in Malaysian economic because of the contribution of agriculture during the early stages of the national economic growth until now. The purpose of this paper is to examine the effects of the selected agriculture sector (palm oil, rubber, rice and saw logs) in the agriculture sector and to examine the impact of money supply across employment and productivity of labour and capital in agriculture sector. This paper uses the secondary data from year 1981 until 2010 from the Department of Statistics Malaysia, Malaysia Productivity Corporation (MPC) and Asian Development Bank (ADB). By using Johansen-Julies Cointegration model, the results showed there is long run relationship between dependent variable and independent variables. But, in Granger Causality model, result showed there is no relationship between money supply and productivity variables. While, this paper also conducts other tests such as Autocorrelation, Ramsey RESET and Histogram Normality Test

    Direct senstivity test for isoniazid.

    Get PDF
    IT is well known that the results of isoniazid sensitivity tests by the indirect method have prognostic significance in the treatment of tuberculosis with regimens containing isoniazid (Tuberculosis Chemotherapy Centre, Madras, 1960 ; Devadatta et al., 1961) ; the indirect method is, however, complex and time-consuming, and therefore not feasible in institutions with limited facilities. Direct sensitivity tests are attractive because they involve only one stage of handling (i.e. cultures need not be set up), are simpler and less expensive, and consume less time. Although the direct sensitivity test introduced by Middlebrook and co-workers (Middlebrook and Cohn, 1958 ; Russell and Middlebrook, 1961) using 7H10 agar medium yielded satisfactory results, it has certain disadvantages. Thus, the medium employed is expensive, the in are not readily available in this country and, in our experience at Madras, losses due to contamination can be considerable. This paper describes a direct sensitivity test for isoniaid using Lowenstein- Jensen medium, and compares the findings obtained by this method with those obtained by the indirect method

    Effect of storage for three months at different temperatures on the sensitivity to streptomycin and isoniazid of cultures of tubercle bacilli

    Get PDF
    MAINTENANCE of bacterial strains by repeated subcultivation is both expensive, laborious and time-consuming ; moreover, there is always the possibility of contamination or of differential selection of sub-strains with specific properties. In consequence, several methods, such as freeze-drying or storage at low temperatures, have been introduced by which bacterial cultures can be kept alive for long periods with their reproductive and metabolic activity at an extremely low level. However, information is rather sparse on such methods for the storage of tubercle bacilli. For instance, Corper and Gauss (1923) found that tubercle bacilli remained viable in Petroff's egg medium or glycerol agar after storage in the incubator or refrigerator for 4 to 8 months. Later workers (Heckly, 1950 ; Stern and Tompsett, 1951 ; Jones, 1957 ; Tsukamura, 1965) suggested preservation of cultures by freezing them in various diluents. More recently, Tarshis (1961) compared storage of cultures in various diluents at –20°C. and concluded that, with minor exceptions, most types of mycobacteria (including tubercle bacilli) can be stored for at least 3 years without any major change in their viability or drug resistance. However, these procedures are time-consuming, expensive and require special equipment and are? therefore, not very practicable in developing countries with limited resources

    Direct Test for Determining Sensitivity of M. Tuberculosis To Streptomycin

    Get PDF
    For a total of 400 sputum specimens, the sensitivity of M. tuberculosis to streptomycin was determined by direct inoculation of the sputum sediment on to drug-free and drugcontaining slopes of Lowenstein-Jensen medium, and also by a standard indirect test. Agreement between the two methods in the classification of strains as sensitive or resistant was of the order of 90%. The optimal time for reading the direct test is 6 weeks

    Genetic structure of a small closed population of the New Zealand white rabbit through pedigree analyses

    Get PDF
    [EN] The genetic structure of a small population of New Zealand White rabbits maintained at the Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India, was evaluated through pedigree analyses. Data on pedigree information (n=2503) for 18 yr (1995-2012) were used for the study. Pedigree analysis and the estimates of population genetic parameters based on the gene origin probabilities were performed. The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.49 yr, 13.23 and 17.59%, respectively. The proportion of population inbred was 100%. The estimated mean values of average relatedness and individual increase in inbreeding were 22.73 and 3.00%, respectively. The percentage increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations and complete generations, respectively. The number of ancestors contributing the majority of 50% genes (fa50) to the gene pool of reference population was only 4, which might have led to reduction in genetic variability and increased the amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fe) and the effective number of ancestors (fa), as expressed by the fe/fa ratio was 1.1, which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29% pedigree was complete, reflecting the well maintained pedigree records. The maximum known generations were 15, with an average of 7.9, and the average equivalent generations traced were 5.6, indicating a fairly good depth in pedigree. The realized effective population size was 14.93, which is very critical, and with the increasing trend of inbreeding the situation has been assessed as likely to become worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10%, which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred, with a very high inbreeding coefficient, and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.The authors acknowledge the support provided by Tamil Nadu Veterinary and Animal Sciences University (TANUVAS) for successful completion of the study.Sakthivel, M.; Balasubramanyam, D.; Kumarasamy, P.; Raja, A.; Anilkumar, R.; Gopi, H.; Devaki, A. (2018). Genetic structure of a small closed population of the New Zealand white rabbit through pedigree analyses. World Rabbit Science. 26(2):101-112. doi:10.4995/wrs.2018.7426SWORD101112262Alderson G.I.H. 1992. A system to maximize the maintenance of genetic variability in small populations. In L. Alderson & I. Bodo (ed). Genetic Conservation of Domestic Livestock II. CABI, Wallingford, UK, 18-29.Boichard D., Maignel L., Verrier E. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 5-23. https://doi.org/10.1186/1297-9686-29-1-5Cervantes I., Goyache F., Molina A., Valera M., Gutiérrez J.P. 2008. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet., 125: 301-310. https://doi.org/10.1111/j.1439-0388.2008.00755.xDuchev Z., Distl O., Groeneveld E. 2006. Early warning system for loss of diversity in European livestock breeds. Arch. Anim. Breed., 49: 521-531. https://doi.org/10.5194/aab-49-521-2006Dunner S., Checa M.L., Gutierrez J.P., Martin J.P., Cañon J. 1998. Genetic analysis and management in small populations: the Asturcon pony as an example. Genetics Selection Evolution 30: 397-405. https://doi.org/10.1186/1297-9686-30-4-397Falconer D.S., Mackay T.F.C. 1996. Introduction to Quantitative Genetics. Longmans Green, Harlow, Essex, UK.Fernández J., Toro M.A., Caballero A. 2003. Fixed contributions designs vs. minimization of global conancestry to control inbreeding in small populations. Genetics, 165: 885-894.González-Recio O., López de Maturana E., Gutiérrez J.P. 2007. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy Sci., 90: 5744-5752. https://doi.org/10.3168/jds.2007-0203Gowane G.R., Chopra A., Misra S.S., Prince L.L.L. 2014. Genetic diversity of a nucleus flock of Malpura sheep through pedigree analyses. Small Ruminant Res., 120: 35-41. https://doi.org/10.1016/j.smallrumres.2014.04.016Goyache F., Gutiérrez J.P., Fernández I., Gomez E., Alvarez I., Díez J., Royo I.J. 2003. Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. J. Anim. Breed. Genet., 120: 95-103. https://doi.org/10.1046/j.1439-0388.2003.00378.xGutiérrez J.P., Altarriba J., Díaz C., Quintanilla A.R., Cañón J., Piedrafita J. 2003. Genetic analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol., 35: 43-64. https://doi.org/10.1051/gse:2002035Gutiérrez J.P., Cervantes I., Goyache F. 2009. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet., 126: 327-332.https://doi.org/10.1111/j.1439-0388.2009.00810.xGutiérrez J.P., Cervantes I., Molina A., Valera M., Goyache F. 2008. Individual increase in inbreeding allows estimating realized effective sizes from pedigrees. Genet. Sel. Evol., 40: 359-378. https://doi.org/10.1051/gse:2008008Gutiérrez J.P., Goyache F. 2005. A note on ENDOG: a computer program for analyzing pedigree information. J. Anim. Breed. Genet., 122: 172-176. https://doi.org/10.1111/j.1439-0388.2005.00512.xHill W.G. 1979. A note on effective population size with overlapping generations. Genetics, 92: 317-322.Lacy R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol., 8: 111-123. https://doi.org/10.1002/zoo.1430080203Leroy G., Mary-Huard T., Verrier E., Danvy S., Charvolin E., Danchin-Burge C. 2013. Methods to estimate effective population size using pedigree data: examples in dog, sheep, cattle and horse. Genet. Sel. Evol., 45: 1-10. https://doi.org/10.1186/1297-9686-45-1Maignel L., Boichard D., Verrier E. 1996. Genetic variability of French dairy breeds estimated form pedigree information. Interbull Bull., 14: 49-54.Martín de la Rosa A.J., Cervantes I., Gutiérrez J.P. 2016. Equivalent effective population size mating as a useful tool in the genetic management of the Ibicenco rabbit breed (Conill Pages d'Eivissa). Czech J. Anim. Sci., 61: 108-116. https://doi.org/10.17221/8783-CJASMartínez R.A., García D., Gallego J.L., Onofre G., Pérez J., Cañón J. 2008. Genetic variability in Colombian Creole cattle populations estimated by pedigree information. J. Anim. Sci., 86: 545-552. https://doi.org/10.2527/jas.2007-0175Meuwissen T.H.E. 1991. Expectation and variance of genetic gain in open and closed nucleus and progeny testing schemes. Anim. Prod., 53: 133-141. https://doi.org/10.1017/S0003356100020043Meuwissen T.H.E. 2009. Towards consensus on how to measure neutral genetic diversity? J. Anim. Breed. Genet., 126: 333-334. https://doi.org/10.1111/j.1439-0388.2009.00839.xMeuwissen T.I., Luo Z. 1992. Computing inbreeding coefficients in large populations. Genet. Sel. Evol., 24: 305-303. https://doi.org/10.1186/1297-9686-24-4-305Miglior F., Burnside E.B., Dekkers J.C. 1995. Non additive genetic effects and inbreeding depression for somatic cell counts of Holstein cattle. J. Dairy Sci., 78: 1168-1173.https://doi.org/10.3168/jds.S0022-0302(95)76734-0Moura A.S.A.M.T., Polastre R., Wechsler F.S. 2000. Dam and litter inbreeding and environmental effects on litter performances in Botucatu rabbits. World Rabbit Sci., 8: 151-157. https://doi.org/10.4995/wrs.2000.433Nagy I., Curik I., Radnai I., Cervantes I., Gyovai P., Baumung R., Farkas J., Szendrő Zs. 2010. Genetic diversity and population structure of the synthetic Pannon White rabbit revealed by pedigree analyses. J. Anim.Sci., 88: 1267-1275. https://doi.org/10.2527/jas.2009-2273Nagy I., Farkas J., Onika-Szvath S., Radnai I., Szendrő Zs. 2011. Genetic parameters and inbreeding depression of litter weight in Pannon White rabbits. Agric. Conspec. Sci., 76: 231-233.Nagy I., Gyovai P., Farkas J., Radnai I., Eles V., Szendro Zs. 2012. Effects of selection and inbreeding on growth and carcass traits of Pannon terminal line rabbits. In Proc.. 10th World Rabbit Congress, 3-6 September 2012, Sharm El-Sheikh, Egypt, 93-96.Panetto J.C.C., Gutiérrez J.P., Ferraz J.B.S., Cunha D.G., Golden B.L. 2010. Assessment of inbreeding depression in a Guzerat dairy herd: Effects of individual increase in inbreeding coefficients on production and reproduction. J. Dairy Sci., 93: 4902-4912. https://doi.org/10.3168/jds.2010-3197Pedrosa V.B., Santana Jr. M.L., Oliveira P.S., Eler J.P., Ferraz J.B.S. 2010. Population structure and inbreeding effects on growth traits of Santa Ines sheep in Brazil. Small Ruminant Res., 93: 135-139. https://doi.org/10.1016/j.smallrumres.2010.05.012Pérez-Enciso M. 1995. Use of uncertain relationship matrix to compute effective population size. J. Anim. Breed. Genet., 112: 327-332. https://doi.org/10.1111/j.1439-0388.1995.tb00574.xPlaninc M., Kermauner A., Kovac M., Malovrh S. 2012. Pedigree analysis in the Sika rabbits in Slovenia. Acta Agr. Slov., Supplement 3: 171-173.Rafat S.A., Allain D., de Rochambeau H. 2009. Genetic description of a divergent selection experiment in Angora rabbits with overlapping generations. J. Anim. Breed. Genet., 126: 189-197. https://doi.org/10.1111/j.1439-0388.2008.00769.xSantana Jr M.L., Oliveira P.S., Eler J.P., Gutiérrez J.P., Ferraz J.B.S. 2012. Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds. J. Anim. Sci. 90: 99-108. https://doi.org/10.2527/jas.2011-4079Sorensen A.C., Sorensen M.K., Berg P. 2005. Inbreeding in Danish dairy cattle breed. J. Dairy Sci., 88: 1865-1872. https://doi.org/10.3168/jds.S0022-0302(05)72861-7Valera M., Molina A., Gutiérrez J.P., Gomes I., Goyache F. 2005. Pedigree analyses in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livest. Prod. Sci., 95: 57-66. https://doi.org/10.1016/j.livprodsci.2004.12.004Venkataramanan R., Subramanian A., Sivaselvam S.N., Sivakumar T., Sreekumar C., Anilkumar R., Iyue M. 2013. Pedigree analysis of the Nilagiri sheep of South India. Anim. Genet. Resour., 53: 11-18. https://doi.org/10.1017/S2078633613000301Wright S. 1931. Evolution in Mendelian populations. Genetics, 16: 97-159

    Report on a stranded sea cow, Dugong dugon in the Gulf of Mannar coast

    Get PDF
    On 31 March 2019, an adult dead female sea cow (Dugong dugon) measuring more than three meters of total length got stranded along the Gulf of Mannar coast at Gandhi Nagar, Mandapam, Ramanathapuram district, Tamil Nadu (09º 27' 6658'' N; 79º 15' 0459'' E). The morphometric details of the female whale that was weighing approximately 350 kg is given in Table 1. The specimen had relatively robust body with loss of almost one third of the ventral skin along with blubber from the thoracic and abdominal region of the body. There were significant cut wounds present on the dorsal as well as lateral sides of the body. The internal organs did not reveal any significant abnormalities for the cause of death. Based on the body condition and external injuries it can be concluded that the cause of death might be due to attempted hunting. Dugongs fall in schedule 1 of the Indian Wildlife (Protection) Act whose hunting is banned and poachers are liable for punishment

    EASY SEARCHING OF TRAIN DETAILS BY RAILWAY ROUTE OPTIMIZATION SYSTEM

    Get PDF
    In today’s modern world, travelling had gained a great importance as users travelling in trains have increased a lot. But they feel still not convenient in their journey as they are not satisfied with the features available in the existing system. They expect a system in such a way that they could reach the required destination in shorter period. Our system is designed as a software to make users journey in a more quicker manner. The main aim of this system is to provide users in easy search of train routes to reach the destination as quick as possible in a very clear manner respectively
    corecore