34 research outputs found
Disentangling ecological networks in marine microbes
There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and their interactions are considered pivotal for ecosystem function. Previous studies have already determined relationships between a limited number of microorganisms. Yet, we still need to understand a large number of interactions to increase our knowledge of complex microbiomes. This is challenging because of the vast number of possible interactions. Thus, microbial interactions still remain barely known to date. Networks are a great tool to handle the vast number of microorganisms and their connections, explore potential microbial interactions, and elucidate patterns of microbial ecosystems.
This thesis locates at the intersection of network inference and network analysis. The presented methodology aims to support and advance marine microbial investigations by reducing noise and elucidating patterns in inferred association networks for subsequent biological down-stream analyses. This thesis’s main contribution to marine microbial interactions studies is the development of the program EnDED (Environmentally-Driven Edge Detection), a computational framework to identify environmentally-driven associations inside microbial association networks, inferred from omics datasets. We applied the methodology to a model marine microbial ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western Mediterranean Sea (ten years of monthly sampling). We also applied the methodology to a dataset compilation covering six global-ocean regions from the surface (3 m) to the deep ocean (down to 4539 m). Thus, our methodology provided a step towards studying the marine microbial distribution in space via the horizontal (ocean regions) and vertical (water column) axes.Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. Per això, les interaccions microbianes encara són poc conegudes fins ara. Les xarxes són una gran eina per tractar el gran nombre de microorganismes i les seves connexions, explorar interaccions microbianes potencials i dilucidar patrons d’ecosistemes microbians. Aquesta tesi es situa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes marines reduint el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors anàlisis biològiques. La principal contribució d’aquesta tesi als estudis d’interaccions microbianes marines és el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), un marc computacional per identificar associacions impulsades pel medi ambient dins de xarxes d’associació microbiana, inferides a partir de conjunts de dades òmics. S’ha aplicat la metodologia a un model d’ecosistema microbià marí a l’Observatori Microbià de la Badia de Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de mostreig mensual). També s’ha la metodologia a una recopilació de dades que cobreix sis regions oceàniques globals des de la superfície (3 m) fins a l'oceà profund (fins a 4539 m).Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las interacciones microbianas son aun poco conocidas. Las redes representan una gran herramienta para analizar la gran cantidad de microorganismos y sus conexiones, explorar posibles interacciones y dilucidar patrones en ecosistemas microbianos. Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar patrones en redes de asociación permitiendo análisis biológicos posteriores. La principal contribución de esta tesis a los estudios de interacciones microbianas marinas es el desarrollo del programa EnDED (Environmentally-Driven Edge Detection), un marco computacional para identificar asociaciones generadas por el medio ambiente en redes de asociaciones microbianas, inferidas a partir de datos ómicos. Aplicamos la metodología a un modelo de ecosistema microbiano marino en el Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar Mediterráneo Noroccidental (diez años de muestreo mensual). También, aplicamos la metodología a una compilación de conjuntos de datos que cubren seis regiones oceánicas globales desde la superficie (3 m) hasta las profundidades del océano (hasta 4539 m). Por lo tanto, nuestra metodología significa un paso adelante hacia de los patrones temporales microbianos marinos y el estudio de la distribución microbiana marina en el espacio a través de los ejes horizontal (regiones oceánicas) y vertical (columna de agua). Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar y eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones microbianas marinas. Además, nuestros resultados subrayaron la necesidad de estudiar la naturaleza dinámica de las redes, en contraste con el uso de redes estáticas únicas agregadas en el tiempo o el espacio. Nuestras nuevas metodologías pueden ser utilizadas por una amplia gama de investigadores que investigan redes e interacciones en diversos microbiomas.Postprint (published version
Disentangling environmental effects in microbial association networks
Background
Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not.
Results
We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges—87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors.
Conclusions
To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses.
Video abstrac
Long-term patterns of an interconnected core marine microbiota
Background Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth’s primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the lack of consensus on how to identify them. So far, most core microbiotas have been defined based on species occurrence and abundance. Yet, species interactions are also important to identify core microbes, as communities include interacting species. Here, we investigate interconnected bacteria and small protists of the core pelagic microbiota populating a long-term marine-coastal observatory in the Mediterranean Sea over a decade. Results Core microbes were defined as those present in \u3e 30% of the monthly samples over 10 years, with the strongest associations. The core microbiota included 259 Operational Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1411 strong and mostly positive (~ 95%) associations. Core bacteria tended to be associated with other bacteria, while core protists tended to be associated with bacteria. The richness and abundance of core OTUs varied annually, decreasing in stratified warmers waters and increasing in colder mixed waters. Most core OTUs had a preference for one season, mostly winter, which featured subnetworks with the highest connectivity. Groups of highly associated taxa tended to include protists and bacteria with predominance in the same season, particularly winter. A group of 13 highly-connected hub-OTUs, with potentially important ecological roles dominated in winter and spring. Similarly, 18 connector OTUs with a low degree but high centrality were mostly associated with summer or autumn and may represent transitions between seasonal communities. Conclusions We found a relatively small and dynamic interconnected core microbiota in a model temperate marine-coastal site, with potential interactions being more deterministic in winter than in other seasons. These core microbes would be essential for the functioning of this ecosystem over the year. Other non-core taxa may also carry out important functions but would be redundant and non-essential. Our work contributes to the understanding of the dynamics and potential interactions of core microbes possibly sustaining ocean ecosystem function
Long-term patterns of an interconnected core marine microbiota
Background Ocean microbes constitute ∼70% of the marine biomass, are responsible for ∼50% of the Earth’s primary production, and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which reflects the lack of consensus on how to identify them. So far, most core microbiotas have been defined based on species occurrence and abundance. Yet, species interactions are also important to identify core microbes, as communities include interacting species. Here, we investigate interconnected bacteria and small protists of the core pelagic microbiota populating a long-term marine-coastal observatory in the Mediterranean Sea over a decade.
Results Core microbes were defined as those present in >30% of the monthly samples over 10 years, with the strongest associations. The core microbiota included 259 Operational Taxonomic Units (OTUs) including 182 bacteria, 77 protists, and 1,411 strong and mostly positive (∼95%) associations. Core bacteria tended to be associated with other bacteria, while core protists tended to be associated with bacteria. The richness and abundance of core OTUs varied annually, decreasing in stratified warmers waters and increasing in colder mixed waters. Most core OTUs had a preference for one season, mostly winter, which featured subnetworks with the highest connectivity. Groups of highly associated taxa tended to include protists and bacteria with predominance in the same season, particularly winter. A group of 13 highly-connected hub-OTUs, with potentially important ecological roles dominated in winter and spring. Similarly, 18 connector OTUs with a low degree but high centrality were mostly associated with summer or autumn and may represent transitions between seasonal communities.
Conclusions We found a relatively small and dynamic interconnected core microbiota in a model temperate marine-coastal site, with potential interactions being more deterministic in winter than in other seasons. These core microbes would be essential for the functioning of this ecosystem over the year. Other non-core taxa may also carry out important functions but would be redundant and non-essential. Our work contributes to the understanding of the dynamics and potential interactions of core microbes possibly sustaining ocean ecosystem function.Preprin
Novel interactions between phytoplankton and bacteria shape microbial seasonal dynamics in coastal ocean waters
Trophic interactions between marine phytoplankton and heterotrophic bacteria are at the base of the biogeochemical carbon cycling in the ocean. However, the specific interactions taking place between phytoplankton and bacterial taxa remain largely unexplored, particularly out of phytoplankton blooming events. Here, we applied network analysis to a 3.5-year time-series dataset to assess the specific associations between different phytoplankton and bacterial taxa along the seasonal scale, distinguishing between free-living and particle-attached bacteria. Using a newly developed network post-analysis technique we removed bacteria-phytoplankton correlations that were primarily driven by environmental parameters, to detect potential biotic interactions. Our results indicate that phytoplankton dynamics may be a strong driver of the inter-annual variability in bacterial community composition. We found the highest abundance of specific bacteria-phytoplankton associations in the particle-attached fraction, indicating a tighter bacteria-phytoplankton association than in the free-living fraction. In the particle-associated fraction we unveiled novel potential associations such as the one between Planctomycetes taxa and the diatom Leptocylindrus spp. Consistent correlations were also found between free-living bacterial taxa and different diatoms, including novel associations such as those between SAR11 with Naviculales diatom order, and between Actinobacteria and Cylindrotheca spp. We also confirmed previously known associations between Rhodobacteraceae and Thalassiosira spp. Our results expand our view on bacteria-phytoplankton associations, suggesting that taxa-specific interactions may largely impact the seasonal dynamics of heterotrophic bacterial communities
Disentangling the mechanisms shaping the surface ocean microbiota
BACKGROUND: The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS: We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS: The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract
Disentangling ecological networks in marine microbes
Memoria de tesis doctoral presentada por Ina Deutschmann para obtener el título de Doctora por la Universitat Politècnica de Catalunya (UPC), realizada bajo la dirección del Dr. Ramiro Logares del Institut de Ciències del Mar (ICM-CSIC).-- 196 pages, 30 figures, 27 tables, 1 appendix[EN] There is a myriad of microorganisms on Earth contributing to global biogeochemical cycles, and their interactions are considered pivotal for ecosystem function. Previous studies have already determined relationships between a limited number of microorganisms. Yet, we still need to understand a large number of interactions to increase our knowledge of complex microbiomes. This is challenging because of the vast number of possible interactions. Thus, microbial interactions still remain barely known to date. Networks are a great tool to handle the vast number of microorganisms and their connections, explore potential microbial interactions, and elucidate patterns of microbial ecosystems. This thesis locates at the intersection of network inference and network analysis. The presented methodology aims to support and advance marine microbial investigations by reducing noise and elucidating patterns in inferred association networks for subsequent biological down-stream analyses. This thesis’s main contribution to marine microbial interactions studies is the development of the program EnDED (Environmentally-Driven Edge Detection), a computational framework to identify environmentally-driven associations inside microbial association networks, inferred from omics datasets. We applied the methodology to a model marine microbial ecosystem at the Blanes Bay Microbial Observatory (BBMO) in the North-Western Mediterranean Sea (ten years of monthly sampling). We also applied the methodology to a dataset compilation covering six global-ocean regions from the surface (3 m) to the deep ocean (down to 4539 m). Thus, our methodology provided a step towards studying the marine microbial temporal patterns and the distribution in space via the horizontal (ocean regions) and vertical (water column) axes.
To reach accurate interaction hypotheses, it is important to determine, quantify, and remove environmentally-driven associations from marine microbial association networks. Moreover, our results underlined the need to study the dynamic nature of networks, in contrast to using single static networks aggregated over time or space. Our novel methodologies can be used by a wide array of researchers investigating networks and interactions in diverse microbiomes[ES] Hay una gran cantidad de microorganismos en la Tierra que contribuyen a los ciclos biogeoquímicos globales, y sus interacciones se consideran fundamentales para la función del ecosistema. Estudios previos ya han determinado relaciones entre un número limitado de microorganismos. Sin embargo, todavía necesitamos comprender una gran cantidad de interacciones para aumentar nuestro conocimiento de los microbiomas más complejos. Esto representa un gran desafío debido a la gran cantidad de posibles interacciones. Por lo tanto, las interacciones microbianas son aun poco conocidas. Las redes representan una gran herramienta para analizar la gran cantidad de microorganismos y sus conexiones, explorar posibles interacciones y dilucidar patrones en ecosistemas microbianos. Esta tesis se ubica en la intersección entre la inferencia de redes y el análisis de redes. La metodología presentada tiene como objetivo avanzar las investigaciones sobre interacciones microbianas marinas mediante la reducción del ruido en las inferencias de redes y elucidar patrones en redes de asociación permitiendo análisis biológicos posteriores. La principal contribución de esta tesis a los estudios de interacciones microbianas marinas es el desarrollo del programa EnDED (Environmentally-Driven Edge Detection), un marco computacional para identificar asociaciones generadas por el medio ambiente en redes de asociaciones microbianas, inferidas a partir de datos ómicos. Aplicamos la metodología a un modelo de ecosistema microbiano marino en el Observatorio Microbiano de la Bahía de Blanes (BBMO) en el Mar Mediterráneo Noroccidental (diez años de muestreo mensual). También, aplicamos la metodología a una compilación de conjuntos de datos que cubren seis regiones oceánicas globales desde la superficie (3 m) hasta las profundidades del océano (hasta 4539 m). Por lo tanto, nuestra metodología significa un paso adelante hacia de los patrones temporales microbianos marinos y el estudio de la distribución microbiana marina en el espacio a través de los ejes horizontal (regiones oceánicas) y vertical (columna de agua). Para llegar a hipótesis de interacción precisas, es importante determinar, cuantificar y eliminar las asociaciones generadas por el medio ambiente en las redes de asociaciones microbianas marinas. Además, nuestros resultados subrayaron la necesidad de estudiar la naturaleza dinámica de las redes, en contraste con el uso de redes estáticas únicas agregadas en el tiempo o el espacio. Nuestras nuevas metodologías pueden ser utilizadas por una amplia gama de investigadores que investigan redes e interacciones en diversos microbiomas[CAT] Hi ha una infinitat de microorganismes a la Terra que contribueixen als cicles biogeoquímics mundials i les seves interaccions es consideren fonamentals pel funcionament dels ecosistemes. Estudis previs ja han determinat les relacions entre un nombre limitat de microorganismes. Tot i això, encara hem d’entendre un gran nombre d’interaccions per augmentar el nostre coneixement dels microbiomes complexos. Això és un repte a causa del gran nombre d'interaccions possibles. Per això, les interaccions microbianes encara són poc conegudes fins ara. Les xarxes són una gran eina per tractar el gran nombre de microorganismes i les seves connexions, explorar interaccions microbianes potencials i dilucidar patrons d’ecosistemes microbians.
Aquesta tesi es sitúa a la intersecció de la inferència de xarxes i l’anàlisi de la xarxes. La metodologia presentada té com a objectiu donar suport i avançar en investigacions microbianes marines reduïnt el soroll i dilucidant patrons en xarxes d’associació inferides per a posteriors anàlisis biològiques. La principal contribució d’aquesta tesi als estudis d’interaccions microbianes marines és el desenvolupament del programa EnDED (Environmentally-Driven Edge Detection), un marc computacional per identificar associacions impulsades pel medi ambient dins de xarxes d’associació microbiana, inferides a partir de conjunts de dades òmics. Vam aplicar la metodologia a un model d’ecosistema microbià marí a l’Observatori Microbià de la Badia de Blanes (BBMO) al mar Mediterrani nord-occidental (deu anys de mostreig mensual). També hem aplicat la metodologia a una recopilació de dades que cobreix sis regions oceàniques globals des de la superfície (3 m) fins a l'oceà profund (fins a 4539 m). Per tant, la nostra metodologia va proporcionar un pas cap a l’estudi dels patrons temporals microbians marins i la distribució microbiana marina a l’espai a través dels eixos horitzontal (regions oceàniques) i vertical (columna d’aigua). Per arribar a hipòtesis d’interacció precises, és important determinar, quantificar i eliminar associacions impulsades pel medi ambient de les xarxes d’associació microbiana marina. A més, els nostres resultats van subratllar la necessitat d'estudiar la naturalesa dinàmica de les xarxes, en contrast amb l'ús de xarxes estàtiques individuals agregades al llarg del temps o l'espai. Les nostres noves metodologies poden ser utilitzades per una àmplia gamma d’investigadors que investiguen xarxes i interaccions en diversos microbiomesMy journey started with his project at the Marine Science Institute (ICM-CSIC) in the Ecology of Marine Microbes group as part of the EU H2020 Marie Skłodowska-Curie Innovative Training Network project SINGEK (Coordinator: Dr. Ramon Massana)Peer reviewe
Crean una herramienta para ver cómo interaccionan los microbios en el océano
Un equipo internacional liderado por el Instituto de Ciencias del Mar (ICM-CSIC) de Barcelona, con la colaboración del Rega Institute de Bélgica, la Universidad de Oslo (UiO) y el Instituto Español de Oceanografía (IEO), ha desarrollado una herramienta (EnDED) que permite ver y predecir las interacciones de los microbios en el océanoPeer reviewe
Desenvolupen una eina per entendre com interaccionen els microbis marins
[EN] This tool makes it possible to improve predictions on how marine microbes interact and could be applied to climate change and bioremediation studies, and to other fields such as medicine or agriculture. The study has been led by the Institut de Ciències del Mar (ICM-CSIC) in Barcelona[ES] Permite mejorar las predicciones sobre cómo interaccionan los microbios marinos y se podría aplicar en estudios sobre cambio climático, biorremediación y también en otros campos como la medicina o la agricultura. Lo ha desarrollado un equipo internacional liderado por el Institut de Ciències del Mar del CSIC[CAT] Permet millorar les prediccions sobre com interaccionen els microbis marins i es podria aplicar en estudis sobre canvi climàtic, bioremediació i també en altres camps com ara la medicina o l'agricultura. Ho ha desenvolupat un equip internacional liderat per l'Institut de Ciències del Mar del CSICPeer reviewe
Alerten dels efectes de l'escalfament sobre la dinàmica de les xarxes microbianes marines
[EN] The work, led by the ICM-CSIC shows that marine microbial networks exhibit recurrent patterns of assembly and disassembly influenced by environmental factors like temperature[ES] Un nuevo estudio internacional liderado por el ICM-CSIC revela que las redes microbianas marinas se articulan y desarticulan por culpa de factores ambientales como la temperatura[CAT] Un nou estudi internacional liderat per l'ICM-CSIC revela que les xarxes microbianes marines s’articulen i es desarticulen per culpa de factors ambientals com la temperatur