8,556 research outputs found

    Thinning algorithms on rectangular, hexagonal and triangular arrays

    Get PDF
    Thinning algorithms on rectangular, hexagonal, and triangular array

    A quantitative study of the orientation bias of some edge detector schemes

    Get PDF
    The evaluation of a particular set of edge detection schemes is described. The results obtained are compared with those obtained from an edge detection scheme using a texture oriented approach. The orientational bias of these schemes is emphasized. Improved qualitative observations are reported and a comparison of the evaluation method with another edge detection evaluation method is presented

    Continuous wave detector has wide frequency range

    Get PDF
    Portable battery-operated detector indicates the presence of steady state signals exceeding a predetermined value over a wide frequency range by the closure of output relay contacts. It was designed to monitor electronic equipment used in the Saturn 2 program

    Clifford algebras and universal sets of quantum gates

    Get PDF
    In this paper is shown an application of Clifford algebras to the construction of computationally universal sets of quantum gates for nn-qubit systems. It is based on the well-known application of Lie algebras together with the especially simple commutation law for Clifford algebras, which states that all basic elements either commute or anticommute.Comment: 4 pages, REVTeX (2 col.), low-level language corrections, PR

    A simple and optimal ancestry labeling scheme for trees

    Full text link
    We present a lgn+2lglgn+3\lg n + 2 \lg \lg n+3 ancestry labeling scheme for trees. The problem was first presented by Kannan et al. [STOC 88'] along with a simple 2lgn2 \lg n solution. Motivated by applications to XML files, the label size was improved incrementally over the course of more than 20 years by a series of papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an asymptotically optimal lgn+4lglgn+O(1)\lg n + 4 \lg \lg n+O(1) labeling scheme using non-trivial tree-decomposition techniques. By providing a framework generalizing interval based labeling schemes, we obtain a simple, yet asymptotically optimal solution to the problem. Furthermore, our labeling scheme is attained by a small modification of the original 2lgn2 \lg n solution.Comment: 12 pages, 1 figure. To appear at ICALP'1

    The Measurement Calculus

    Get PDF
    Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new version also include formalization of several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. To appear in Journal of AC

    Adiabatic Quantum Computation in Open Systems

    Full text link
    We analyze the performance of adiabatic quantum computation (AQC) under the effect of decoherence. To this end, we introduce an inherently open-systems approach, based on a recent generalization of the adiabatic approximation. In contrast to closed systems, we show that a system may initially be in an adiabatic regime, but then undergo a transition to a regime where adiabaticity breaks down. As a consequence, the success of AQC depends sensitively on the competition between various pertinent rates, giving rise to optimality criteria.Comment: v2: 4 pages, 1 figure. Published versio

    A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation

    Multipartite pure-state entanglement and the generalized GHZ states

    Get PDF
    We show that not all 4-party pure states are GHZ reducible (i.e., can be generated reversibly from a combination of 2-, 3- and 4-party maximally entangled states by local quantum operations and classical communication asymptotically) through an example, we also present some properties of the relative entropy of entanglement for those 3-party pure states that are GHZ reducible, and then we relate these properties to the additivity of the relative entropy of entanglement.Comment: 7 pages, Revtex, type error correcte
    corecore