-
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by NASA Technical Reports Server

Technical Report 70-115 June, 1970

NGL-21-002-008
AT-(40-1)-3662

THINNING ALGORITHMS ON

RECTANGULAR, HEXAGONAL AND TRIANGULAR ARRAYS

E. S. Deutsch

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

https://core.ac.uk/display/85236037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Technical Report 70-115 June, 1970
NGL-21-002-008
AT-(40-1)-3662

THINNING ALGORITHMS ON
RECTANGULAR, HEXAGONAL AND TRIANGULAR ARRAYS

E. S. Deutsch

ABSTRACT

In this report three thinning algorithms are de-
veloped; one each for use with rectangular, hexagonal
and triangular arrays. The approach to the development
of each algorithm is the same. Pictorial results produc-
ed by each of the algorithms are presented and the rel-
ative performances of the latter are compared. It is
found that the algorithm operating with the triangular
array is the most sensitive to image irregularities and
noise, Yet it will yield a thinned image with an over-
all reduced number of points. It is concluded that the
algorithm operating in conjunction with the hexagonal
array has features which strike a balance between those
of the other two.

This research was supported in part by Grant NGL-21-002-008
from the National Aeronautics and Space Administration,

and in part by Contract AT-(40-1)-3662 with the Atomic
Energy Commission.

Introduction

In much of the literature concerned with thinning
or skeletonizing operations on digital images, the most
common type of array used is the rectangular one., All
of the thinning operations proposed, however diverse,
make use of a small rectangular subarea, centered at
each point in the picture, within the confines of which
the skeletonizing operations are performed. This is
not surprising, for conventional scanning techniques,
operating in a line-by-line fashion, at once suggest
this type of array and hence the subsequent form of

processing.

In this paper it is proposed to examine additional
types of arrays: not only rectangular, but also
hexagonal and triangular arrays. These arrays
correspond to the two-dimensional mosaics., The fact
that none of theése arrays, with the exception of the
first, follow a strict row-and-column arrangement is
of no real consequence, for given a fixed rectangular

array, the others can always be derived therefrom.

In comparing algorithms associated with each of
the four types of arrays, the basic approach to each
algorithm will be the same. A thinning algorithm de-
veloped for rectangular arrays forms the basis of the
approach. This thinning algorithm was first proposed

by Rutovitz [1] and subsequently modified by the author [2].

The use of a genevalized approach, rather than the

development of a different type of algorithm for each

specific type of;ar:ay, is deliberate, as it has the
advantage that the relative merits of each type of ar-
ray can be assessed in an easier manner., Otherwise,
factors pertaining to the individuality of each approach
would have to be taken into account. Suppose, for ex-
ample that we found that an adaptive approach to thin-
ning on a rectangular array was the best. Then it

would be unfair to compare the results with those ob-
tained using, say, an averaging technique on an hexagonal

array. The approach adopted here is based on notions of
connectivity.
Of interest will be the relative "efficiency" of each

type of array. Clearly, as the structure becomes more
involved so might its corresponding thinning algorithm.
However, it will be useful to determine what advantages
if any a particular array has, e.g., the resulting image

reduction and processing time in each case.

Rectangular Arrays

The skeletonizing algorithm described below is
partially described in [1] and [2]. It is presented
here in full. In dealing with patterns on rectangular
arrays it has been pointed out [3] that thefe are two
connectivity situations. The pattern itself may be ei-
ther four-way or eight-way connected. Correspondingly,
the complement, or background, must be either eight-way
or four-way connected. Verification of this statement

is presented below and follows the argument in [3].

Consider the pattern shown in Figure 2. Assuming
four-neighbor connectivity for both the pattern and the

complement, the number of vertices V in the pattern is

16, the number of edges E is 16 and the number of faces

is 4.,

Application of the Euler formula
vV ~-E+ F

to the pattern should give its genus. Thus by the above
formula the genﬁs is 16 - 16 + 4 = 4, However the pat-
tern has four components and the background has two, so
that the genus (the number of pattern components minus
the number of background components + 1) is 4 - 2 + 1 = 3,
A similar disagreement in the value of the genus arises
when eight-neighbor connectivity is assumed. For then
the number of vertices in Figure 2 is 12, the number of
edges 16, and the number of faces 4. Thus by Euler's
formula the genus’is 0, whereas in fact the genus should

be 1.

However, if four-neighbor connectivity is assumed
for the pattern ,and eight for the background then the
genus, by Euler's formula, is 4. Since the number of
background components is now 1 (not 2) the value of
the genus obtained by counting the number of components
is also 4., Similarly, when we assume the pattern to be
eight-~neighbor connected and the background to be four-
neighbor connected, both methods of calculating the value

of the genus, which is 0, agree.

For any element a, . in row i and column j of the

1

matrix, let v(1) ... v(8) be its eight neighbors

starting from ay 41 in counter-clockwise order.
I

The crossing number, y, is defined as
¥ = %)\ vik+1l) - v(k) |
k=1
and indicates the number of distinct continuous groups
of black and white (pattern and background) elements a-
round a; L. In order to delete an element from the pat-

!

tern all of the following conditions must hold:

1. yx=2o0r 4
8

2. 2 (k) = 2, i.e., the element must have
k=1
at least two neighbors in the pattern

3. v{(1)v(3)v(5) 0
4. y(L)v(3)y(7) = 0
5. If y =4 then in addition, either condition

(a) or (b) must hold:

a. {v(L)ay(7) = 1}
and
{v(2)vy(e) = 1}
and
{v(3) vy(4) vy(5) vy(8) = 0}
b. {v(L)Ay(3) = 1}
and
{v(4)vy(8) = 1}
and
{v(2) Av(5) Av(6) Ay(7) = 0}

The deletion operations continue until no further change

oCcCcurs.,

Briefly, the function of rule 2 is to prevent the
already thinned components from vanishing. Rules 3 and
4 preserve the connectivity in the top and right hand
positions within the rectangular window. Unless the

pattern component is diagonal, erasure can only take

place if there is only one peripheral pattern component
(y = 2, Rule 1). A special case arises when the pat-

tern is a diagonal line, in which yx = 4. Thinning also
takes place if the diagonal line is two elements thick

(Rule 5).

Rules 1 through 4 apply equally to a four-way con-
nected pattern; rule 5, however, applies only if eight-
neighbor connectivity is used. It has been shown that

the algorithm does not disconnect [1], [2].

A further rule can be applied to each element in
the image after the last pass, provided the elimination

of rectangular curves is not considered harmful: if
v(k)y(k+2) = 1 for k = 2, 4, 6, 8

then ai ; can be deleted.

1}

It should be noted that the crossing number can be

defined in a simpler way:

X =2 | v(k+2) - ~v(k) |.
k=1,3,5,7
The value of y now gives the number of eight-way con-
nected components surrounding a; 5° The previous defi-

nition of y yielded the number of such four-way connected

components,

The algorithm in its present form is nonisotropic.
In order to render it isotropic the following additional
rules have to be used:
6. ~v(3)v(5)v(7)
7. y(5)v(7)v(1l)
8. if x = 4 then either condition (a) or (b)

0
0

il

must apply:

a. {v(5)Ay(3) = 1}
and
{v(6)vy(2) = 1}
and
{v(1)Av(4) Ay(7) Av(8) = 0}
b. {v(7)Ay(5) = 1}
' and
{v(8)vy(4) = 1}
and
{v(5)Av(6) AY(7) Av(2) = 0}

Note that the last set of rules consists of rules
3 through 5 "rotated" through 180°, After the first
pass using rules 1 through 5, rules 1, 2 and 6 through

8 are applied on a second pass, thus completing one cycle.

In what follows, similar sets of rules are devel-
oped for the other arrays. The appfoach will be the
same in principle, and in each case cognizance will
have to be taken of the neighborhood connectivities.
of the pattern and the background. Once this is estab-
lished one can proceed with the design of a. thinning

algorithm.

Hexagonal Arrays

The first thing to note concerning hexagonal arrays
is that there is no choice of connectivity for either
the pattern or the background; both must be six neighbor
connected. This is verified using the Euler formula

on the pattern shown in Figure 2(a).

Assuming six neighbor connectivity, the number of
vertices V is 24, the number of edges E is 30 and the

number of faces F is 6. Using the Euler formula, the

genus 1s egual to 0. Since the number of components of
the pattern is 1 and the number of components of the
background is 2, the genus has the value 1 - 2 + 1 = 0.

Thus both values of the genus agree.

In developing an algorithm for hexagonal arrays, it
is noted that rules 1 and 2 pertaining to the rectangular
array apply here too. Specifically, rule 2 is required

to prevent already thinned lines from disappearing.

The crossing number can take the values 0, 2, 4 and
6. However, unlike the rectangular case, as soon as its
value exceeds 2, the central element cannot be deleted;
for in those cases the peripheral pattern (black) ele-
ments form two separate components which will be dis-

connected unless the center element is retained.

We thus have the first two rules

6

Zoy(u) =2

k=1 ’
and y = 2

both of which must apply if the element is to be deleted.

Here too we require a set of rules similar to rules
3 and 4 above. In Figure 2(a) let the neighboring ele-
ment immediately to the right of the center element be
labelled v(1l), and the remaining ones, in counterclock-
wise direction, wv(2) through y(6). At first sight one
is lead to stipulate that the following three connectivity
conditions must be obeyed if the element is to be deleted:
(a) ~(L)y(2)v(3) =0
(b) v(1)v(2)v(6) = 0
(c) ~(l)~v(5)v(6) = O

i

1§

These rules seem reasonable since they guarantee
connectivity between any set of three consecutive periph-
eral elements. For example, if rule (a) is not obeyed,
the center element is not deleted, and the connectivity
between vy(l) and y(3) is maintained via the center ele-
ment. Any set of three consecutive elements not explicitly
written down forms the mirror image of one of the sets
in (a), (b), or (c¢), and is taken care of when a previous,

or a later element is considered.

However, consider the simple pattern shown in Fig-
ure 3. In each pair of elements marked 1 and 2, one of
the elements will have to be retained if the pattern is
not to break up. By rule (c) the elements marked 1 are
retained, whereas those labelled 2 are removed. Now con-—
sider the effect rules (a), (b), and (c¢) would have on
the line pattern shown in Figure 4(a). The initial thin-
ning stages are shown in Figures 4(b) and (c). Evidently
rules (a) and (c) are incomparable: they cannot operate
together in their present.form and one of them must be

changed.

Taking the mirror image of rule (c) in order to pre-
serve connectivity of any three consecutive elements, i.e.,
the rule

v(2)y(3)v(4) = 0O
overcomes the difficulty encountered with the pattern in
Figure 4; but if this rule is to be used then the pattern

shown in Figure 5 will eventually vanish.

However, the connectivity between vy(1l) and v(5) (and

between v(2) and v{4) when v(3) is the center element)

will be maintained if the following two rules are substi-
tuted for rule (c):
v(1) =1

Xy(1) 7 2

That is, the crossing number at neighbor vy(1l) (the latter
must also belong to the pattern), must not be 2., For
then, if vy(5) belongs to the pattern, connectivity be-

tween v(l) is maintained via the center element.

The rules constituting the hexagonal thinning al-~

gorithm are summarized below.

6
1. 2 vy(k) =2

k=1
2. x = 2
3. y(L)v(2)v(3) =0
4. v(l)v(2)v(6) =0
5. v(1) = 1 and %y (1) # 2.

Once again,- in order to render the algorithm iso-~

tropic, the additional rules given below can be used:

6. v(4)v(5)y(6) =0
7. ~(3)y(4)y(5) =0
8. «v(4) = 1 and Xy(4) #£ 2

Triangular Arrays

The structure of the triangular array is somewhat
more complicated than either of those discussed above,
The first thing to notice about the array is the fact
that the triangular elements have alternating orienta-
tions. The arrangement of peripheral elements will thus

vary accordingly. {(See Figure 6.)

Here too it will be necessary to establish the
neighborhood connectivity of both the pattern and its
background. Before doing so we first show, in Figures
6(a) and (b), the two different nearest-neighbor ar-
rangements for the triangular array. For ease of ref-
erence, the central element in Figure 6(a) will be

referred to as A, and that of Figure 6(b) as V,

It will be observed from the figure that the near-
est neighbors of both A andV can be divided into three
sets such that all the elements within each set are equi-
distant from the central element, distances being measured
from centroids. The first set contains the triangular
neighbors whose centroids are at a distance of 2 units
away from the central element's centroid (where the
median of each triangle is of length 3 units). The sec-
ond set contains the six elements each entroid of which
is at a distance of 2,/3 units away, and the third con-
tains the three élements furthermost away, at a distance
of 4 units. Note that included in this count are all
the elements which share either an edge or a vertex with
either A or ¥ . This suggests a choice of neighborhood
connectivity; 3, 9, or 12. See Figure 6(c), where the
elements around A have been numbered according to the

sets to which they belong.

Tt will be found that the Euler equation guoted above
is satisfied if the pattern is 1l2-neighbor connected, As
a result the background must be 3-neighbor connected.

As a verification consider the configuration of elements

in Figure 6(d), where the shaded elements constitute the pattern.

10

The number of vertices V -- if 12 neighbor connectivity
is assumed -- is 12, The number of edges E is 23 and
the number of faces in the pattern is 11. Accordingly,

the genus is given by
12 - 23 + 11 = 0O

The genus is in fact zero because the numbers of com-

ponents and holes in the configuration are both 1.

For the pattern to be l2-way connected, the back-
ground must be 3-neighbor connected. This, because now,
the only way the chain of triangles surrounding A can be
broken, so as to connect the "hole"” in the center with
the "outside", is for two neighboring elements, with a
common edge, to belong to the background too -- i.e.,

the background must be 3-way connected.

By the same token, if the pattern in Figure 7(d)
is 3-way connected, then the number of vertices it con-
tains is 13 (there are in effect two vertices at A),
the number of edges is 23, and the number of faces is

11. Thus the genus, by Euler's formula, is
13 = 23 + 11 =1

Once again this corresponds to the true value of the
genus; there are now only two components, pattern and
background, whereas before there were three, one of the
pattern and two of the background. With 3-way connectiv-
ity of Figure 6(d) there is in fact a gap at A, The same
argument would apply had the pattern in Figure 6(d4d) con-
sisted of all but the center element and any other of the

12 neighbors.

11

As a further example consider the arrangement shown
in Figure 7(a). If l2-neighbor connectivity is assumed
then there will be no gap at A. Here the connection is
maintained by an element belonging to the third set of
neighbors. Similarly, there would not be a gap at B,
where connectivity is maintained by an element belong-
ing to the second set of neighbors. This, in principle,
is similar to the anomalies arising in rectangular ar-
rays: in Figure 7(c) there would be a gap at A unless

8-neighbor connectivity is assumed.

Let each peripheral element be denoted by yh(k)
where k is the number of the element belonging to the
set h =1, 2, or 3. At the same time it will be conve-
nient to refer to any of the 12 neighboring elements
simply as vy(k). In the latter representation k denotes
the neighbor number, 1 - 12, in general. Thus y2(3) = v(4);
see Figure 8. The arrangement of a computer printout of
a triangular array is shown in Figure 9(a) together with
the 12 neighbors of A and V corresponding to Figure 8.
The distances of neighbor v(l) through vy(12) from A are
given by the pairs

(lll)l(llz)l(ol3)I(—ll2)l(_lll)l(_2lo)
(*21-1)1(_11—2)I(Ol—l)1(11“2)1(21—1)1(210)1 respeCtively'

For V the corresponding distances are

(11"1)1(210)1(211)1(112)r(Oll)l(‘llz)
(—2,1),(‘2,0),(‘1,“1),(“1,“2),(O,—3),(l,—2) reSpeCtiVely.

It will be observed that the yl(k) elements are
flanked on either side by two yzik) neighbors. In turn, each

such pailr of yz(k) elements is separated by a yB(k) type element.

12

Similaxrly, each yz(k) neighbor has as its immediate
neighbor a yl(k) and a y3(k) neighbor, while every y3(k)

neighbor has two yz(k) element as its immediate neighbor.

If the pattern were 3-way connected, then for either
A or V to be completely surrounded by pattern elements,
all the 12 neighbors must belong to the pattern. On the
other hand, for a l2-way connected pattern the central
element can be completely surrounded by combinations of
either yl(k) or yz(k) elements or both. The y3(k) type
neighbors can be bypassed. This fact will be used later

on.

In view of its rather large size, there arise within
the window itself a number of closed subpatterns, the
connectivity of which must be preserved. One such case

is shown in Figure 10(a) in which
v, (3) = 0 and v, (5) = v,(6) = 4 = 1.

There are a total of six such cases, in each of which

the central element together with the two yz(n) neighbors
flanking its yl(n) neighbor have the value 1 while the
yl(n) element itself is 0. We thus have the first con-
nectivity rule which must be satisfied before either A

or V can be deleted from the pattern:
v1 (KD Ay, (2k=1) Ay, (2k) = 0
for k=1, 2, or 3

The two-neighbor rule used for the other arrays can-
not be applied indiscriminately here. Figure 10(b)

shows two patterns, one being a rotated version of the

13

other, which would vanish if this rule were to be ap-
plied. There are a total of twelve such cases, six for
each of the two neighbor arrangements. Accordingly, we
have a further rule which must be satisfied prior to

the erasure of either A or V:

12
2 oy(k) > 2
k=1
or if 7. v{k) = 2 then yl(k)/\[\(z(Zk-l)\/Yz(Zk)] = 0
for k=1, 2, or 3

It was stated above that in tracing a l2-way con-
nected path around A it is immaterial whether or not the
y3(n) elements are included in the path. Thus a further
condition must be satisfied if the central element is to
be deleted:

7-‘ {vq (R VL v, (2k=1) Ay, (2k)]} = O,
k=1,2,3
This test examines whether the central element is com-
pletely surrounded by a path in the pattern. If the a-
bove expression is nonzero then the element cannot be
erased since it combines with its nearest and next nearest
set of neighbors to form one component of the pattexn,

Some examples are shown in Figure 11.

Two separate thinning algorithms were developed for this
array, the difference between them being the method of defining
the crossing number. In the first algorithm all the
peripheral elements are used just as in the case of the
rectangular arrays. In the second algorithm the crossing

number was calculated to be the number of connected

14

components around A or V.

Thus for the first algorithm we have the same rule

as for the preceding cases, namely that y = 2.

From Figure 9(b) it will be seen that the yz(n)—
type neighbors form a hexagon around A (or V). It was
therefore thought convenient to apply, in principle, the
rules developed for the hexagonal arrays. Accordingly
two further sets of rules were added both of which must

be satisfied before the central element is removed:

If the central element is A, we reguire
v(2)y(4) y(12) = O

v(2) v(10) v(12) = 0

X = 2
v, (2)

If the central element is V we require

v(2)Ay(4)ay(6) = O
v(2) Av(4) Ay(12) = O

X =z 2
v2(2)

It was observed from the results that images are
not reduced to single-~line thickness. Briefly the reason
for this is due to the abnormally large window size and
the method whereby the crossing number was defined. This
algorithm was not developed any further because the one
described below gave better thinning results. As a final
point in connection with this algorithm, an improvement
may result if the rules containing the associated yl(n)
and y3(n) elements are also included. Thus for the de-

letion of A we would reguire the condition that

15

I
o

v(2)v{4)y(5)
or v(3)vy(4)vy(5)

It
o

Similarly for the deletion of V we would require
that
v(2) Ay(3)Ay(12) = O
or y(1)Avy(2)Avy(4) = 0O

Let us inspect the triangular array a little more
closely. The neighbors of A or V together with A or V
respectively can be thought of as forming three hexagonal
lobes (see Figure 12(a)):; in each lobe the central element
provides the sixth vertex. Considering one such lobe, it
differs from the ordinary hexagonal arrangement in that
the former has no central element. (This is in fact a
method of generating triangular arrays; however, in so
doing, the density of points changes. In the experiments
described here the density of points remained as high as
possible for a given fixed basic rectangular array.) This
being the case, and since each vertex of each lobe is con-
nected directly to all the other vertices in that lobe
(this also applies to the elements which form part of the
neighboring lobes), we can define a new crossing number
as the value of X' where,

x' = 2 v Vv (k=1) Ay (k+1) T3-{v(k+4) V[v(k+3) Ay(k+5) 1} 1.
k=1,5,9

The value of ', just as in the case of the modified
crossing number definition for rectangular arrays, gives
the number of 12-way connected components surrounding A
or V. Thus in the modified algorithm we have the rule
y' =z 2 which replaces the old y = 2 rule; that is, unless
x' =z 2 hor V cannot be erased. Note that the rule con-

cerning the number of neighbors remains as before.

16

It is now necessary to establish new connectivity
conditions, for those used in the previous algorithm are
inadequate. This will become apparent as the new rules

are developed below.

The similarity of the formation of the 12 neighbors
to a hexagonal arrangement is still maintained, but with
the new definition of the crossing number there are two
hexagonal arrangements to consider: Firstly, that formed
by the yz(n) neighbors, as before, and secondly, that
portion of a hexagonal array formed by two yl(n) elements
and one yz(n) element (Figure 13(b) and (c)). The lat-
ter arrangement did not have to be considered in the prev-
ious algorithm because the crossing number of this combi-
nation, if it existed on its own, would not have been 2.
The neighbors forming the additional partial hexagonal

arrangement around A and V respectively are

and v(1), v(9), v(2)

It will have been observed that the 12 neighbor ar-
rangement of V is identical with that of A rotated through
180°, This being the case, we will first develop the
rules for the neighbor of A and then apply them to those
of V. Reference to the rules developed for the hexagonal
arrays above indicates that there is one additional rule,
applying to the neighbors of V only, which involves the
neighbors vy(1), vy(9) and v(2).

Consider once again Figure 12(b) and the first con-

nectivity rule for the hexagonal array. It is apparent

17

that the equivalent of this rule here would be the two

rules

il

0
0,

v(2) y(4)vy(12)
and y(1)vy(5)v(12)

or on combining them

[y (L) vy(2) AL (4) vy(5) Jav(12) = O.....T)
The above rule incorporates the connectivity conditions

of parts of the hexagonal arrays formed by the yz(n)
neighbors and the y2(n) and yl(n) neighbors.

Similarly the second connectivity rule, "borrowed”

from the hexagonal array, requires that

v(2)y(10)v(12) = O.

There is, however, a further element combination to
the right of A which cannot be disturbed, namely that
formed by wv(2), and the pairs of y(l) and vy(12) and vy(10)
and v(9). Accordingly we have the combined rule for the

above two cases
[v(1)vy(12) JAL v(9) vy (10) Ay (2) = O.....T,

Finally in the same vein we have the rule which will

maintain the connectivity between the yl(n) neighbors only,

v(1)v(9) = O.....T,

The connectivity situations discussed so far involved
combinations of either yl(n) or yz(n) elements or both,
There are, however, further combinations involving all

three types of neighbors.

In Figure 13 are shown some examples of a pattern
consisting of yl(n), yz(n) and yg(n) type elements., It
will be appreciated that such combinations can only be

18

formed along the three principal lines of the triangular
window, Each such line includes one of the sides of

either A or V.
In Figure 13(a), we have the full combination
yl(k)y(kiZ)y(ki3) =1 for k = 1,

yet the partial combination of yl(n), yz(n) and y3(n)

elements shown in Figure 13(c) must also be considered.

In total there are six such principal combinations,
three for A and three for V. However, from Figure 1l4(a)
it becomes clear that the combination shown is the only
one that has to be considered for A. The remaining two
combinations formed along the remaining two principal
lines lie either to the left of or below A and need not
be examined. We thus have the rule that unless vy(1) to-
gether with any three of the elements wvy(k+2) and v(k+3)
satisfy

yl(k)AV(kiZ)y(ki3) =0 fork=1.....T,

A cannot be erased,

There will be no direct equivalent of rule T, for a,

1
in the case of V. However, the equivalent of the third

rule for hexagonal arrays yields here the rule

v(2)v(4)y(6) = 0

and by supplementing this rule so that it also includes the

yz(n) and y3(n) neighbor we get the combined rule

[v(2) vy (3) Il v(4) vy(B)av(6) = 0..... T

The equivalent of rule T2 is

Cv(2) vy (1) AL v(4) vy(5) Jav(12) = R
A further rule, applicable to V only, which is the equiv-
alent of the fifth rule

vy(2) = 1 and x§(2) = 2

The equivalent of rule T3 will be

v(L)y(5) = Ou.ut.To .

Lastly, we have to consider the connectivity situ-
ations involving all three types of elements., Whereas
there was only one such principal (along one principal
line) case to be considered for A there are two principal
cases here (Figures 13(b) and (d)). Accordingly, we have

the two connectivity rules similar to rule T4:

yl(k)y(kiZ)y(ki3) = 0 for k = 1 and 2.....T8.
To summarize, the thinning rules applicable to the
triangular array are

%ﬁ 12
1. vik) > 2, or if }; = 2 then

Il

Yl(k)A[yz(k-l)Vyz(k)] =0 %=1, 2, and 3

2. Ql(k)Ayz(Zk-l)Ayz(k) =0 k =1, 2, and 3.

A v

4a y(1)Av(9)=0 : 4b v(1)Avy(5)=0
56 [v(4)vy(5) JAL v(1) vy(2) JAy(12)=0 5b [y(4) vy (5) JAl v(2) Av(3) 1Ay (6)=0
6a [v({1)vy(12) JALv(9) Ay(10) Av(2)=0 6b [v(2) vy (1) Al y(4) Av(5) JAy(12)=0
Ta vy (k) Av(k2) Ay (k3)=0 k=1 7b Yl(k)Ay(kiZ)Ay(kiB)mO k=1, 2
= ' 2
8 v(2) 1, and XV(Z)#

U}

20

Rules 1 through 3 remain unchanged for the isotropic
algorithm; however, rules 4 through 8 are changed by

symmetry as follows

9a v(5)Ay(9)=0 9b v(5)Ay(9)=0

10a [v(6) vy(7)JAL v(8) vy(9) JAy(L0)=0 10b [v{(1)Avy(12) JA[v(9)Av(10)]
Ay (8)=0

1la [v(5) vy(6) IALv(8) vy(9) JAy(14)=0 11b [v(5) vy(6)AL v(8) vy(9)Ay(10)=0
12a yl(k)Ay(kiZ)Ay(ki3)=0, k=2,3 12b yl(k)Ay(kiZ)Ay(ki3)=O, k=2
13 v(6)=1 and X§(6)¢2

21

Results and Discussion

A field in which thinning algorithms have found a
wide application is that of character recognition, in
which, prior to the encoding of a character's shape,
it is necessary to reduce the original image to a line
drawing. A good testing ground for the performances
of the algorithms developed above would therefore be
their application to alphanumeric characters. The
following would thus be of interest; given a fixed
rectangular array of points can these points, inter-
connected to form a different array structure, and in
conjunction with an appropriate thinning algorithm,
yield a more useful processor, Clearly, the ultimate
usefulness of any preprocessor will depend upon its
performance within an entire image-recognition system
of which it only forms a part. However given that the
desired result is a simple line drawing of the original
image consisting of a minimal number of points it is

possible to compare such algorithms.

The algorithms developed are all parallel in oper-
ation, and similar operations in each algorithm use similar
instructions. A useful way of comparing their "cost"
would be to compare the storage and processing time of
each. Another factor worth comparing is the comparative

data reduction resulting from each algorithm, bearing in

mind that the densities of points in the arrays differ.

Figure 14(a) and (b) show some images operated upon

by the thinning algorithms, and in Figure 15 the various

22

performance parameters pertaining to each algorithm are

summarized.

It will be seen from Figure 14 that of all the re-
sulting thinned images, those obtained using the tri-
angular array contain the least number of points per
image. This result is not unexpected, since on this
array, the neighbors span the largest distance. The ratio
of the maximum distances of any neighbor on the rectan-
gular, hexagonal and triangular arrays is 1:,/2:3/./2 re-
spectively. However the increased size of the basic
window renders the processing on a triangular array -
and thus the resulting image - very sensitive to edge ir-
regularities and still more important, to noise. The
former effect is clearly demonstrated in the last image
of Figure 14(b). From this point of view the hexagonal
array is preferential, since all its neighbors, theoretically
at least, are equidistant. The hexagonal array has the ad-
ditional attraction that the processing time required

is considerably less.

Both the triangular and the hexagonal arrays contain
the same number of points - half the number of points con-
tained within the original rectangular array. Yet despite
the fact that the image on the triangular array contains
the minimal number of points there is an additional argument
against the use of triangular arrays to be considered. If
the thinned image 1is to be chain encoded then the number
of direction vectors, in the case of the triangular array,
is twelve. Thus the maximum number of bits required to re-
present a single direction vector is four; this compares

with three bits required for the other two arrays. Thus

23

from the point of view of storage or transmission of g
complete resulting line drawing, the triangular array will
only be useful if the number of points of the image there-
on is less than three quarters the number of points in the
image on the hexagonal array, The experiments show this
is the case, yet all this is obtained at the expense of

increased processing time,

The hexagonal grid also has advantages over the rec-
tangular grid as far as processing time and data reduction
are concerned. See [4] for a further discussion on the

relative merits of these two types of arrays.

Conclusion

Thinning algorithms for various types of arrays were
developed in this paper and compared experimentally. It
is concluded that triangular arrays while being the most
expensive in terms of processing time will yield an image
with a minimal number of points. The algorithm operating
with this array is, however, very sensitive to noise and
edge irregularities. The hexagonal array offers a bal-
ance between the rectangular and the triangular arrays
in that it requires almost the same storage, yields a mid-
way average reduction value and has the shortest processing

time.

24

References

[1] Rutovitz, D., "Pattern Recognition", Journal of the

Royal Statistical Society, (A) Vol. 129 IV, pp.
504-530, 1966,

[2] Deutsch, E. S., "Some Comments on a Thinning Algorithm",

British Computer Journal, Vol 12, No. 3, November
1969.

[3] Rosenfeld, A., "Connectivity in Digital Pictures",
JACM, Vol. 17, No. 1, pp. 146-160, January 1970,

[4]7 Deutsch, E. S., "On Parallel Operations on Hexagonal

Arrays". Proc. IEEE on Computers (Correspondence),
1970. To be published.

25

Figure 2

v/ N\ v

VAVAVAVAVAVAV
AWAVAVAVAVAVA

NN NN\
%/w/vv

I T e
+++ +'8 00 +
o+ +' 0 @+ + +
+'e 0 0 + + + +
+ 8 %_+2+ + o+ o+ +

+ + + + + o+ Pigure 3

+ 4+ 4+ + + o+ o+
+ 6 & 6 & & +
+ & &6 6 & e +
++ + + + + ++
a

+ 4+ + + + + + +
+ 6 086 6 + +
++ 6 66 & + +
+ + + + + + +
b

+ 4+ + 4+ + + + +
++ 68 + + +
++ ¢ 686 + + +
+ + 4+ + + + +

¢ Figure 4

+ + 4+ + + +
+ + + 8 & +
+ + + 6 0 +
+ + @& 6 + +
+ + & 6 + +
+ 6 6 + + +
+ 866 + + +
+ + 4+ + + +

Figure 5

Figure 8

S I O I T

+ ++++F++++++F
+ + 4+ ++++++08 4+ + +

R I Tk I T T S S

9 + +

+H+++ P

++ ++++++ G+ +
+ &6 +++++860 + +
+ 6066 ++++04bo + +
+ VWO ++++0006 + +

+ ++ + +/0

+ +
+ +

& + +
$ + +

& &
o oe + +
& + + + + + &6
+ 4+ + + + + +
+ 4+ + + 4+t

$
&
+ @

-

+ -9

+ e +++ 4+

+ VP + + + +
+¢ 3
+

+ B0+ ++++8 0+ +

+ 88+ + ++++ + ++
+ 4+ O+ + + 4+
+ 4+ A+ A+ FF

-+

4+ +++ A+ +++ o+

Figure 9

Figure 10

@ & W

Figure 11

Figure 12

Figure 13

Rectangular Hexagonal Triangular
array array array

Original

Figure 14(a)

Original Rectangular Hexagonal Triangular

array array array

Figure 14 (b)

Rectangular

Image Processing

Time 1
No. of Core Locations 1
Average Image 1

Reduction

Figure

Hexagonal
0.5
1.0
1.7
15

Triangular

1.8

