20 research outputs found

    Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation

    Get PDF
    We investigated the dynamics of denitrification and nitrous oxide (N2O) accumulation in 4 nitrate (NO3-) contaminated denitrifying sand and gravel aquifers of northern Germany (Fuhrberg, Sulingen, Thulsfelde and Gottingen) to quantify their potential N2O emission and to evaluate existing concepts of N2O emission factors. Excess N-2 - N-2 produced by denitrification - was determined by using the argon (Ar) concentration in groundwater as a natural inert tracer, assuming that this noble gas functions as a stable component and does not change during denitrification. Furthermore, initial NO3- concentrations (NO3- that enters the groundwater) were derived from excess N-2 and actual NO3- concentrations in groundwater in order to determine potential indirect N2O emissions as a function of the N input. Median concentrations of N2O and excess N-2 ranged from 3 to 89 mu g N L-1 and from 3 to 10 mg N L-1, respectively. Reaction progress (RP) of denitrification was determined as the ratio between products (N2O-N + excess N-2) and starting material (initial NO3- concentration) of the process, characterizing the different stages of denitrification. N2O concentrations were lowest at RP close to 0 and RP close to 1 but relatively high at a RP between 0.2 and 0.6. For the first time, we report groundwater N2O emission factors consisting of the ratio between N2O-N and initial NO3--N concentrations (EF1). In addition, we determined a groundwater emission factor (EF2) using a previous concept consisting of the ratio between N2O-N and actual NO3--N concentrations. Depending on RP, EF(1) resulted in smaller values compared to EF(2), demonstrating (i) the relevance of NO3- consumption and consequently (ii) the need to take initial NO3--N concentrations into account. In general, both evaluated emission factors were highly variable within and among the aquifers. The site medians ranged between 0.00043-0.00438 for EF(1) and 0.00092-0.01801 for EF(2), respectively. For the aquifers of Fuhrberg and Sulingen, we found EF(1) median values which are close to the 2006 IPCC default value of 0.0025. In contrast, we determined significant lower EF values for the aquifers of Thulsfelde and Gottingen. Summing the results up, our study supports the substantial downward revision of the IPCC default EF5-g from 0.015 (1997) to 0.0025 (2006).DF

    Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil

    Get PDF
    Background and aims: Alternate wetting and drying (AWD) saves water in paddy rice production but could influence soil physical conditions and root growth. This study investigated the interaction between contrasting rice genotypes, soil structure and mechanical impedance influenced by hydraulic stresses typical of AWD. Methods: Contrasting rice genotypes, IR64 and deeper- rooting Black Gora were grown in various soil conditions for 2 weeks. For the AWD treatments the soil was either maintained in a puddled state, equilibrated to −5 kPa (WET), or dried to −50 kPa and then rewetted at thewater potential of −5 kPa (DRY-WET). There was an additional manipulated macropore structure treatment, i.e. the soil was broken into aggregates, packed into cores and equilibrated to −5 kPa (REPACKED). A flooded treatment (puddled soil remained flooded until harvest) was set as a control (FLOODED). Soil bulk density, penetration resistance and X-ray Computed Tomography (CT) derived macropore structure were measured. Total root length, root surface area, root volume, average diameter, and tip number were determined by WinRhizo. Results: AWD induced formation of macropores and slightly increased soil mechanical impedance. The total root length of the AWD and REPACKED treatments were 1.7–2.2 and 3.5–4.2 times greater than that of the FLOODED treatment. There was no significant difference between WET and DRY-WET treatments. The differences between genotypes were minimal. Conclusions: AWD influenced soil physical properties and some root characteristics of rice seedlings, but drying soil initially to −50 kPa versus −5 kPa had no impact. Macropores formed intentionally from repacking caused a large change in root characteristics

    Assessment of excess N<sub>2</sub> and groundwater N<sub>2</sub>O emission factors of nitrate-contaminated aquifers in northern Germany

    No full text
    International audienceWe investigated the dynamics of denitrification and nitrous oxide (N2O) accumulation in 4 nitrate (NO3?) contaminated denitrifying sand and gravel aquifers of northern Germany (Fuhrberg, Sulingen, ThĂŒlsfelde and Göttingen) to quantify their potential N2O emission and to evaluate existing concepts of N2O emission factors. Excess N2-N2produced by denitrification ? was determined by using the argon (Ar) concentration in groundwater as a natural inert tracer, assuming that this noble gas functions as a stable component and does not change during denitrification. Furthermore, initial NO3? concentrations (NO3? that enters the groundwater) were derived from excess N2 and actual NO3? concentrations in groundwater in order to determine potential indirect N2O emissions as a function of the N input. Median concentrations of N2O and excess N2 ranged from 3 to 89 ?g N L?1 and from 3 to 10 mg N L?1 respectively. Reaction progress (RP) of denitrification was determined as the ratio between products (N2O-N + excess N2) and starting material (initial NO3? concentration) of the process, characterizing the different stages of denitrification. N2O concentrations were lowest at RP close to 0 and RP close to 1 but relatively high at a RP between 0.2 and 0.6. For the first time, we report groundwater N2O emission factors consisting of the ratio between N2O-N and initial NO3?-N concentrations (EF1). According to denitrification intensity, EF(1) was smaller than the ratio between N2O-N and actual NO3?-N concentrations EF(2). In general, these emission factors were highly variable within the aquifers. The site medians ranged between 0.00043?0.00438 for EF(1) and 0.00092?0.01801 for EF(2), respectively. For the aquifers of Fuhrberg and Sulingen, we found EF(1) median values which are close to the 2006 IPCC default value of 0.0025. In contrast, we determined significant lower EFs for the aquifers of ThĂŒlsfelde and Göttingen

    Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System

    Get PDF
    peer-reviewedUnderstanding denitrification rates in groundwater ecosystems can help predict where agricultural reactive nitrogen (N) contributes to environmental degradation. In situ groundwater denitrification rates were determined in subsoil, at the bedrock-interface and in bedrock at two sites, grassland and arable, using an in situ ‘push-pull’ method with 15N labelled nitrate (NO3--N). Measured groundwater denitrification rates ranged from 1.3 to 469.5 ”g N kg-1d-1. Exceptionally high denitrification rates observed at the bedrock-interface at grassland site (470±152”g N kg-1d-1; SE, standard error) suggest that deep groundwater can serve as substantial hotspots for NO3--N removal. However, denitrification rates at the other locations were low and may not substantially reduce NO3--N delivery to surface waters. Denitrification rates were negatively correlated with ambient dissolved oxygen (DO), redox potential (Eh), ks and NO3- (all p-values p<0.01) and positively correlated with SO42- (p<0.05). Higher mean N2O/(N2O+N2) ratios at arable (0.28) site than the grassland (0.10) revealed that arable site has higher potential to indirect N2O emissions. Identification of areas with high and low denitrification and related site parameters can be a tool to manage agricultural N to safeguard the environment.Department of Agriculture and Food, Ireland - Research Stimulus Fund Programme (Grant RSF 06383
    corecore