640 research outputs found

    Quantization Of Spin Direction For Solitary Waves In A Uniform Magnetic Field

    Full text link
    It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data) and have nonzero spin (nonzero intrinsic angular momentum in the center of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the influence of an externally imposed uniform magnetic field. We find that the only stationary spinning solitary wave solutions have spin parallel or anti-parallel to the magnetic field direction.Comment: 4 page

    No Drama Quantum Theory?

    Full text link
    This work builds on the following result of a previous article (quant-ph/0509044): the matter field can be naturally eliminated from the equations of the scalar electrodynamics (the Klein-Gordon-Maxwell electrodynamics) in the unitary gauge. The resulting equations describe independent dynamics of the electromagnetic field (they form a closed system of partial differential equations). An improved derivation of this surprising result is offered in the current work. It is also shown that for this system of equations, a generalized Carleman linearization (Carleman embedding) procedure generates a system of linear equations in the Hilbert space, which looks like a second-quantized theory and is equivalent to the original nonlinear system on the set of solutions of the latter. Thus, the relevant local realistic model can be embedded into a quantum field theory. This model is equivalent to a well-established model - the scalar electrodynamics, so it correctly describes a large body of experimental data. Although it does not describe the electronic spin and possibly some other experimental facts, it may be of great interest as a "no drama quantum theory", as simple (in principle) as classical electrodynamics. Possible issues with the Bell theorem are discussed.Comment: 4 page

    Afferent Input Induced by Rhythmic Limb Movement Modulates Spinal Neuronal Circuits in an Innovative Robotic In Vitro Preparation

    Get PDF
    Locomotor patterns are mainly modulated by afferent feedback, but its actual contribution to spinal network activity during continuous passive limb training is still unexplored. To unveil this issue, we devised a robotic in vitro setup (Bipedal Induced Kinetic Exercise, BIKE) to induce passive pedaling, while simultaneously recording low-noise ventral and dorsal root (VR and DR) potentials in isolated neonatal rat spinal cords with hindlimbs attached. As a result, BIKE evoked rhythmic afferent volleys from DRs, reminiscent of pedaling speed. During BIKE, spontaneous VR activity remained unchanged, while a DR rhythmic component paired the pedaling pace. Moreover, BIKE onset rarely elicited brief episodes of fictive locomotion (FL) and, when trains of electrical pulses were simultaneously applied to a DR, it increased the amplitude, but not the number, of FL cycles. When BIKE was switched off after a 30-min training, the number of electrically induced FL oscillations was transitorily facilitated, without affecting VR reflexes or DR potentials. However, 90 min of BIKE no longer facilitated FL, but strongly depressed area of VR reflexes and stably increased antidromic DR discharges. Patch clamp recordings from single motoneurons after 90-min sessions indicated an increased frequency of both fast- and slow-decaying synaptic input to motoneurons. In conclusion, hindlimb rhythmic and alternated pedaling for different durations affects distinct dorsal and ventral spinal networks by modulating excitatory and inhibitory input to motoneurons. These results suggest defining new parameters for effective neurorehabilitation that better exploits spinal circuit activity

    SOME ASPECTS OF ENERGY SAVING OF BURDEN MATERIAL IN THE BLAST FURNACE

    Get PDF
    To determine the possibility of self-stabilization effect for burden surface texture and gas flow in operating blast furnace under the proper conditions was experimentally proved for the first time, as well as the reasons of the effect disruption

    Enhanced neuroinflammation and pain hypersensitivity after peripheral nerve injury in rats expressing mutated superoxide dismutase 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation and nitroxidative stress are implicated in the pathophysiology of neuropathic pain. In view of both processes, microglial and astroglial activation in the spinal dorsal horn play a predominant role. The present study investigated the severity of neuropathic pain and the degree of glial activation in an inflammatory- and nitroxidative-prone animal model.</p> <p>Methods</p> <p>Transgenic rats expressing mutated superoxide dismutase 1 (hSOD1<sup>G93A</sup>) are classically used as a model for amyotrophic lateral sclerosis (ALS). Because of the associated inflammatory- and nitroxidative-prone properties, this model was used to study thermal and mechanical hypersensitivity following partial sciatic nerve ligation (PSNL). Next to pain hypersensitivity assessment, microglial and astroglial activation states were moreover characterized, as well as inflammatory marker gene expression and the glutamate clearance system.</p> <p>Results</p> <p>PSNL induced thermal and mechanical hypersensitivity in both wild-type (WT) and transgenic rats. However, the degree of thermal hypersensitivity was found to be exacerbated in transgenic rats while mechanical hypersensitivity was only slightly and not significantly increased. Microglial Iba1 expression was found to be increased in the ipsilateral dorsal horn of the lumbar spinal cord after PSNL but such Iba1 up-regulation was enhanced in transgenic rats as compared WT rats, both at 3 days and at 21 days after injury. Moreover, mRNA levels of Nox2, a key enzyme in microglial activation, but also of pro-inflammatory markers (IL-1β and TLR4) were not modified in WT ligated rats at 21 days after PSNL as compared to WT sham group while transgenic ligated rats showed up-regulated gene expression of these 3 targets. On the other hand, the PSNL-induced increase in GFAP immunoreactivity spreading that was evidenced in WT rats was unexpectedly found to be attenuated in transgenic ligated rats. Finally, GLT-1 gene expression and uptake activity were shown to be similar between WT sham and WT ligated rats at 21 days after injury, while both parameters were significantly increased in the ipsilateral dorsal region of the lumbar spinal cord of hSOD1<sup>G93A </sup>rats.</p> <p>Conclusions</p> <p>Taken together, our findings show that exacerbated microglial activation and subsequent inflammatory and nitroxidative processes are associated with the severity of neuropathic pain symptoms.</p

    When Inequality is Equitable: Validity, Propriety and Third Party Allocations

    Get PDF
    The author summarizes theories of equity and distributive justice that predict actors use legitimate distribution rules to act to maintain or to restore equity. He elaborates those ideas, distinguishing legitimacy based on validity (socially supported) from propriety (acceptance by the focal actor). Experimental research showed strong effects of both types of legitimacy on behavior, with validity having slightly stronger effects.This research was supported by a grant from the National Science Foundation (SOC #7817^3<»), Morris Zelditch, Jr.» Principal Investigator. Computations were supported by a grant from the Office of the Dean of Graduate Studies and Research at Stanford University

    A Variational Procedure for Time-Dependent Processes

    Full text link
    A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix, employing the "factorization" of the density. Only the "kinetic energy" appears in the Lagrangian. The formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport theory, etc. It recaptures the Least Dissipation Function condition of Rayleigh-Onsager {\bf and in practical applications is flexible}. The variational proposal is tested on a two level system interacting that is subject, in one instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure

    Evaluation of Spinal Toxicity and Long-term Spinal Reflex Function after Intrathecal Levobupivaciane in the Neonatal Rat

    Get PDF
    Neuraxial anesthesia is utilized in children of all ages. Local anesthetics produce dose-dependent toxicity in certain adult models, but the developing spinal cord may also be susceptible to drug-induced apoptosis. In postnatal rodents, we examined the effects of intrathecal levobupivacaine on neuropathology and long-term sensorimotor outcomes
    corecore