51 research outputs found

    Participation in medical decision-making across Europe: an international longitudinal multicenter study

    Get PDF
    Background: The purpose of this paper was to examine national differences in the desire to participate in decision-making of people with severe mental illness in six European countries. Methods: The data was taken from a European longitudinal observational study (CEDAR; ISRCTN75841675). A sample of 514 patients with severe mental illness from the study centers in Ulm, Germany, London, England, Naples, Italy, Debrecen, Hungary, Aalborg, Denmark and Zurich, Switzerland were assessed as to desire to participate in medical decision-making. Associations between desire for participation in decision-making and center location were analyzed with generalized estimating equations. Results: We found large cross-national differences in patientsā€™ desire to participate in decision-making, with the center explaining 40% of total variance in the desire for participation (p<0.001). Averaged over time and independent of patient characteristics, London (mean=2.27), Ulm (mean=2.13) and Zurich (mean=2.14) showed significantly higher scores in desire for participation, followed by Aalborg (mean=1.97), where scores were in turn significantly higher than in Debrecen (mean=1.56). The lowest scores were reported in Naples (mean=1.14). Over time, desire for participation in decision-making increased significantly in Zurich (b=0.23) and decreased in Naples (b=-0.14). In all other centers, values remained stable. Conclusions: This study demonstrates that patientsā€™ desire for participation in decisionmaking varies by location. We suggest that more research attention be focused on identifying specific cultural and social factors in each country to further explain observed differences across Europe

    Disruption of Spectrin-Like Cytoskeleton in Differentiating Keratinocytes by PKCĪ“ Activation Is Associated with Phosphorylated Adducin

    Get PDF
    Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCĪ“ was activated by phosphorylation on Thr505. Specific inhibition of PKCĪ“(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCĪ“ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCĪ“, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCĪ“. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCĪ“(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex

    The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q

    Full text link
    One of the vital roles of ascorbic acid (vitamin C) is to act as an antioxidant to protect cellular components from free radical damage. Ascorbic acid has been shown to scavenge free radicals directly in the aqueous phases of cells and the circulatory system. Ascorbic acid has also been proven to protect membrane and other hydrophobic compartments from such damage by regenerating the antioxidant form of vitamin E. In addition, reduced coenzyme Q, also a resident of hydrophobic compartments, interacts with vitamin E to regenerate its antioxidant form. The mechanism of vitamin C antioxidant function, the myriad of pathologies resulting from its clinical deficiency, and the many health benefits it provides, are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44796/1/10863_2004_Article_BF00762775.pd

    HƤufigkeit und Bedeutung der Relaparotomie

    No full text
    • ā€¦
    corecore