1,012 research outputs found

    Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes

    Get PDF
    Mutations in the APETALA1 gene disturb two phases of flower development, flower meristem specification and floral organ specification. These effects become manifest as a partial conversion of flowers into inflorescence shoots and a disruption of sepal and petal development. We describe the changes in an allelic series of nine apetala1 mutants and show that the two functions of APETALA1 are separable. We have also studied the interaction between APETALA1 and other floral genes by examining the phenotypes of multiply mutant plants and by in situ hybridization using probes for several floral control genes. The results suggest that the products of APETALA1 and another gene, LEAFY, are required to ensure that primordia arising on the flanks of the inflorescence apex adopt a floral fate, as opposed to becoming an inflorescence shoot. APETALA1 and LEAFY have distinct as well as overlapping functions and they appear to reinforce each other's action. CAULIFLOWER is a newly discovered gene which positively regulates both APETALA1 and LEAFY expression. All functions of CAULIFLOWER are redundant with those of APETALA1. APETALA2 also has an early function in reinforcing the action of APETALA1 and LEAFY, especially if the activity of either is compromised by mutation. After the identity of a flower primordium is specified, APETALA1 interacts with APETALA2 in controlling the development of the outer two whorls of floral organs

    SUPERMAN, a regulator of floral homeotic genes in Arabidopsis

    Get PDF
    We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products

    A genetic and molecular model for flower development in Arabidopsis thaliana

    Get PDF
    Cells in developing organisms do not only differentiate, they differentiate in defined patterns. A striking example is the differentiation of flowers, which in most plant families consist of four types of organs: sepals, petals, stamens and carpels, each composed of characteristic cell types. In the families of flowering plants in which these organs occur, they are patterned with the sepals in the outermost whorl or whorls of the flower, with the petals next closest to the center, the stamens even closer to the center, and the carpels central. In each species of flowering plant the disposition and number (or range of numbers) of these organs is also specified, and the floral 'formula' is repeated in each of the flowers on each individual plant of the species. We do not know how cells in developing plants determine their position, and in response to this determination differentiate to the cell types appropriate for that position. While there have been a number of speculative proposals for the mechanism of organ specification in flowers (Goethe, 1790; Goebel, 1900; Heslop-Harrison, 1964; Green, 1988), recent genetic evidence is inconsistent with all of them, at least in the forms in which they were originally presented (Bowman et al. 1989; Meyerowitz et al. 1989). We describe here a preliminary model, based on experiments with Arabidopsis thaliana. The model is by and large consistent with existing evidence, and has predicted the results of a number of genetic and molecular experiments that have been recently performed

    Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion

    Get PDF
    Genome editing has emerged as a technology with a potential to revolutionize plant breeding. In this study, we report on generating, in less than ten months, Tomelo, a non-transgenic tomato variety resistant to the powdery mildew fungal pathogen using the CRISPR/Cas9 technology. We used whole-genome sequencing to show that Tomelo does not carry any foreign DNA sequences but only carries a deletion that is indistinguishable from naturally occurring mutations. We also present evidence for CRISPR/Cas9 being a highly precise tool, as we did not detect off-target mutations in Tomelo. Using our pipeline, mutations can be readily introduced into elite or locally adapted tomato varieties in less than a year with relatively minimal effort and investment

    Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana

    Get PDF
    As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local "outcrossing hotspots" appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions.Financial support came from an NIH Ruth Kirschstein NRSA Postdoctoral Fellowship (KB), a Human Frontiers Science Program Postdoctoral Fellowship (RAL), grants DFG ERA-PG ARelatives and FP6 IP AGRON-OMICS (contract LSHG-CT-2006-037704), from a Gottfried Wilhelm Leibniz Award of the DFG, and the Max Planck Society (DW)

    NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches.

    Get PDF
    Phytochromes initiate chloroplast biogenesis by activating genes encoding the photosynthetic apparatus, including photosynthesis-associated plastid-encoded genes (PhAPGs). PhAPGs are transcribed by a bacterial-type RNA polymerase (PEP), but how phytochromes in the nucleus activate chloroplast gene expression remains enigmatic. We report here a forward genetic screen in Arabidopsis that identified NUCLEAR CONTROL OF PEP ACTIVITY (NCP) as a necessary component of phytochrome signaling for PhAPG activation. NCP is dual-targeted to plastids and the nucleus. While nuclear NCP mediates the degradation of two repressors of chloroplast biogenesis, PIF1 and PIF3, NCP in plastids promotes the assembly of the PEP complex for PhAPG transcription. NCP and its paralog RCB are non-catalytic thioredoxin-like proteins that diverged in seed plants to adopt nonredundant functions in phytochrome signaling. These results support a model in which phytochromes control PhAPG expression through light-dependent double nuclear and plastidial switches that are linked by evolutionarily conserved and dual-localized regulatory proteins

    Dissection of miRNA Pathways Using Arabidopsis Mesophyll Protoplasts

    Get PDF
    MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.Fundação para a Ciência e Tecnologia fellowships: (SFRH/BD/33563/2008, SFRH/BPD/47280/2008, SFRH/BPD/79255/2011) and grant: (PTCD/BIA-BCM/107924/2008); EMBO fellowship & EMBO Installation program; Deutsche Forschungsgemeinschaft grant: (SPP1530); Max Planck Society grant
    corecore