10 research outputs found

    Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes

    Get PDF
    Abstract It is recommended that individuals with diabetes restrict their dietary sodium intake. However, although salt intake is correlated with BP (blood pressure), it also partly determines the activation state of the RAAS (reninangiotensin-aldosterone system), a key mediator of diabetes-associated atherosclerosis. apoE KO (apolipoprotein E knockout) mice were allocated for the induction of diabetes with streptozotocin or citrate buffer (controls) and further randomized to isocaloric diets containing 0.05 %, 0.3 % or 3.1 % sodium with or without the ACEi [ACE (angiotensin-converting enzyme) inhibitor] perindopril. After 6 weeks of study, plaque accumulation was quantified and markers of atherogenesis were assessed using RT-PCR (reverse transcription-PCR) and ELISA. The association of sodium intake and adverse cardiovascular and mortality outcomes were explored in 2648 adults with Type 1 diabetes without prior CVD (cardiovascular disease) from the FinnDiane study. A 0.05 % sodium diet was associated with increased plaque accumulation in diabetic apoE KO mice, associated with activation of the RAAS. By contrast, a diet containing 3.1 % sodium suppressed atherogenesis associated with suppression of the RAAS, with an efficacy comparable with ACE inhibition. In adults with Type 1 diabetes, low sodium intake was also associated with an increased risk of all-cause mortality and new-onset cardiovascular events. However, high sodium intake was also associated with adverse outcomes, leading to a J-shaped relationship overall. Although BP lowering is an important goal for the management of diabetes, off-target actions to activate the RAAS may contribute to an observed lack of protection from cardiovascular complications in patients with Type 1 diabetes with low sodium intake

    ACE2 deficiency shifts energy metabolism towards glucose utilization

    No full text
    Abstract BACKGROUND: This study aimed at investigating the effects of genetic angiotensin-converting enzyme (ACE) 2 deficiency on glucose homeostasis in the pancreas and skeletal muscle and their reversibility following ACE inhibition. PROCEDURES: ACE2-knockout and C57bl6J mice were placed on a standard diet (SD) or a high-fat diet (HFD) for 12weeks. An additional group of ACE2-knockout mice was fed a SD and treated with the ACE inhibitor, perindopril (2mgkg(-1)day(-1)). Glucose and insulin tolerance tests, indirect calorimetry measurements and EchoMRI were performed. Non-esterfied 'free' fatty acid oxidation rate in skeletal muscle was calculated by measuring the palmitate oxidation rate. \u3b2-cell mass was determined by immunostaining. Insulin, collectrin, glucose transporter protein, and peroxisome proliferator-activated receptor-\u3b3 expression were analysed by RT-PCR. Markers of mithocondrial biogenesis/content were also evaluated. MAIN FINDINGS: ACE2-knockout mice showed a \u3b2-cell defect associated with low insulin and collectrin levels and reduced compensatory hypertrophy in response to a HFD, which were not reversed by perindopril. On the other hand, ACE2 deficiency shifted energy metabolism towards glucose utilization, as it increased the respiratory exchange ratio, reduced palmitate oxidation and PCG-1\u3b1 expression in the skeletal muscle, where it up-regulated glucose transport proteins. Treatment of ACE2-knockout mice with perindopril reversed the skeletal muscle changes, suggesting that these were dependent on Angiotensin II (Ang II). PRINCIPAL CONCLUSIONS: ACE2-knockout mice display a \u3b2-cell defect, which does not seem to be dependent on Ang II but may reflect the collectrin-like action of ACE2. This defect seemed to be compensated by the fact that ACE2-knockout mice shifted their energy consumption towards glucose utilisation via Ang II

    Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the ApoE knockout mouse

    No full text
    Abstract RATIONALE: Angiotensin-converting enzyme (ACE)2 opposes the actions of angiotensin (Ang) II by degrading it to Ang 1-7. OBJECTIVE: Given the important role of Ang II/Ang 1-7 in atherogenesis, we investigated the impact of ACE2 deficiency on the development of atherosclerosis. METHODS AND RESULTS: C57Bl6, Ace2 knockout (KO), apolipoprotein E (ApoE) KO and ApoE/Ace2 double KO mice were followed until 30 weeks of age. Plaque accumulation was increased in ApoE/Ace2 double KO mice when compared to ApoE KO mice. This was associated with increased expression of adhesion molecules and inflammatory cytokines, including interleukin-6, monocyte chemoattractant protein-1, and vascular cell adhesion molecule-1, and an early increase in white cell adhesion across the whole aortae on dynamic flow assay. In the absence of a proatherosclerotic (ApoE KO) genotype, ACE2 deficiency was also associated with increased expression of these markers, suggesting that these differences were not an epiphenomenon. ACE inhibition prevented increases of these markers and atherogenesis in ApoE/ACE2 double KO mice. Bone marrow macrophages isolated from Ace2 KO mice showed increased proinflammatory responsiveness to lipopolysaccharide and Ang II when compared to macrophages isolated from C57Bl6 mice. Endothelial cells isolated from Ace2 KO mice also showed increased basal activation and elevated inflammatory responsiveness to TNF-\u3b1. Similarly, selective inhibition of ACE2 with MLN-4760 also resulted in a proinflammatory phenotype with a physiological response similar to that observed with exogenous Ang II (10(-7) mol/L). CONCLUSIONS: Genetic Ace2 deficiency is associated with upregulation of putative mediators of atherogenesis and enhances responsiveness to proinflammatory stimuli. In atherosclerosis-prone ApoE KO mice, these changes potentially contribute to increased plaque accumulation. These findings emphasize the potential utility of ACE2 repletion as a strategy to reduce atherosclerosis

    Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes

    Get PDF
    It is recommended that individuals with diabetes restrict their dietary sodium intake. However, although salt intake is correlated with BP (blood pressure), it also partly determines the activation state of the RAAS (renin-angiotensin-aldosterone system), a key mediator of diabetes-associated atherosclerosis. apoE KO (apolipoprotein E knockout) mice were allocated for the induction of diabetes with streptozotocin or citrate buffer (controls) and further randomized to isocaloric diets containing 0.05%, 0.3% or 3.1% sodium with or without the ACEi [ACE (angiotensin-converting enzyme) inhibitor] perindopril. After 6 weeks of study, plaque accumulation was quantified and markers of atherogenesis were assessed using RT-PCR (reverse transcription-PCR) and ELISA. The association of sodium intake and adverse cardiovascular and mortality outcomes were explored in 2648 adults with Type 1 diabetes without prior CVD (cardiovascular disease) from the FinnDiane study. A 0.05% sodium diet was associated with increased plaque accumulation in diabetic apoE KO mice, associated with activation of the RAAS. By contrast, a diet containing 3.1% sodium suppressed atherogenesis associated with suppression of the RAAS, with an efficacy comparable with ACE inhibition. In adults with Type 1 diabetes, low sodium intake was also associated with an increased risk of all-cause mortality and new-onset cardiovascular events. However, high sodium intake was also associated with adverse outcomes, leading to a J-shaped relationship overall. Although BP lowering is an important goal for the management of diabetes, off-target actions to activate the RAAS may contribute to an observed lack of protection from cardiovascular complications in patients with Type 1 diabetes with low sodium intake.Chris Tikellis, Raelene J. Pickering, Despina Tsorotes, Valma Harjutsalo, Lena Thorn, Aila Ahola, Johan Wadén, Nina Tolonen, Markku Saraheimo, Daniel Gordin, Carol Forsblom, Per-Henrik Groop, Mark E. Cooper, John Moran, Merlin C. Thoma

    Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis

    No full text
    Activation of the type 1 angiotensin II receptor (AT(1)) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT(1) receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT(1) receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-kappa B-driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT(1) receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT(1) receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE(362-404) was able to inhibit transactivation of RAGE and attenuate Ang II-dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE(362-404) restored Ang II-dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation
    corecore