15 research outputs found

    Curcumin Attenuates Angiogenesis in Liver Fibrosis and Inhibits Angiogenic Properties of Hepatic Stellate Cells

    Get PDF
    Sinusoidal pathological angiogenesis is a novel therapeutic target for liver fibrosis. We demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells (LSECs) were not impaired by curcumin. Further investigations showed that curcumin inhibited VEGF expression in hepatic stellate cells (HSCs) by disrupting PDGF-βR/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin via blocking PDGF-βR/FAK/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of PPARγ was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPARγ activation-dependent mechanism. PPARγ could be a target molecule for reducing pathological angiogenesis during liver fibrosis

    Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    Get PDF
    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/ Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis

    UV-light photocatalytic activity of cyclized polyacrylonitrile modified zinc oxide

    No full text
    In order to improve the photocatalytic properties of ZnO, the cyclized polyacrylonitrile(CPAN) modified zinc oxide(ZnO) nanocomposites are prepared by impregnation method. The size, morphology, internal structure of ZnO/CPAN nanocomposite and ZnO nanoparticles are characterized by means of X-ray diffraction (XRD),transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The UV-light photocatalytic activity of ZnO/CPAN is evaluated with methyl orange as model pollutant under UV-light irradiation. The results of photocatalytic experiment show that the CPAN modified ZnO can significantly improve the UV-light photocatalytic activity of ZnO particles. When the mass ratio of ZnO/CPAN is 1 000∶1, the heat treatment temperature is 150 ℃, and the heat treatment time is 30 min, the photocatalytic activity is the highest

    m6A methylation-induced NR1D1 ablation disrupts the HSC circadian clock and promotes hepatic fibrosis

    No full text
    The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management

    Effect of codon optimization of IgASE1 on fatty acid conversion in transgenic <i>Arabidopsis</i>.

    No full text
    <p>(a) ω3 fatty acid conversion rates in transgenic <i>Arabidopsis</i> expressing WT and the codon optimized IgASE1; (b) ω6 fatty acid conversion rates in transgenic <i>Arabidopsis</i>. Number of transgenic plants per 10 transgenics having different fatty acid conversion rates are shown. Conversion rate of ω3 (ALA to ETrA) or ω6 (LA to EDA) fatty acids are calculated as: (product/product+substrate)x100.</p

    Positions of nucleotides that were changed for codon optimization of <i>IgASE1</i>.

    No full text
    <p>(a) Codon changes in the first 15 amino acids at the N-terminus; (b) Codon changes of CGC<sub>Arg</sub> at positions 10, 35 and 84.</p
    corecore