163 research outputs found

    Brief 8: International Fisheries Governance that Works: The Case for a Global Fisheries Organization

    Get PDF
    International fisheries are being overexploited, and the current institutional structure in place to manage them is not working effectively. Presently, two sets of intergovernmental institutions oversee global fishing. The first comprises roughly three dozen regional fisheries management organizations (RFMOs), approximately 19 of which are charged with regulating fishing in the areas they oversee. The second set consists of global organizations that touch on but do not directly regulate fisheries issues, such as the United Nations Food and Agriculture Organization (FAO), the World Trade Organization (WTO), the World Bank, and the International Maritime Organization (IMO). This management patchwork is inadequate to the task, and needs to be supplemented by a new global fisheries organization. Such an organization would most usefully serve three core functions: Coordinating the various existing institutional participants in international fisheries governance; Addressing the crisis of overcapitalization and overcapacity in the fishing industry driven by widespread government subsidies; Overseeing a system of international individual transferable quotas (ITQs). This policy brief outlines the nature of the problem and discusses these three functions in greater depth

    Influence Of HF2V Damping Devices On The Performance Of The SAC3 Building Subjected To The SAC Ground Motion Suites

    Get PDF
    Recent advances in energy dissipation for structural systems can create structural connections that undergo zero sacrificial energy absorbing damage, even at extreme story drifts. However, questions exist around the ability of such structures to re-center after a major event. In this paper, the seismic performance of the as-designed SAC LA3 seismic frame with rigid moment connections at the beam ends is compared with the same frame using semi-rigid connections with high force-to-volume (HF2V) lead dissipators. Non-linear dynamic analysis is preformed using Abaqus™. With respect to re-centering, the presence of the gravity frames in the model is also considered. It was found that the placement of dissipators, ignoring the effect of gravity frames, caused a 12% increase in period due to the decreased stiffness of the connections. During design level ground shaking the semi-rigid connections with HF2V dissipators have slightly lower accelerations, up to an 80% increase in peak drift, and a 200% increase in the permanent displacement compared to the as-designed case, but no structural damage is expected. When gravity frames are considered, the floor accelerations decrease further, the peak displacements do not significantly change, but the residual storey drift ratios reduce to approximately 0.17%. This result is less than one half that of the as-designed frame, where typically gravity frame effects are not considered. The addition of braces with a stiffness 20% of the pushover stiffness ensures that the structures can re-center after any given event to within construction error. The realistic non-linear dynamic analyses combining HF2V lead dissipators with gravity frames and well-designed non-structural elements creates a system with almost no structural damage and low residual displacements

    Donor characteristics and the allocation of aid to climate mitigation finance

    Get PDF
    We make use of a panel dataset of 22 donor countries from 1998 to 2009 to examine the links between donor characteristics and the share of overseas development assistance allocated to climate mitigation finance. We find that donors with a larger green domestic budget tend to allocate a smaller portion of overseas aid to mitigation finance (possibly as a result of a competing interest between spending on domestic environmental projects and international climate projects). The opposite holds for donor countries with better institutions (governance) that have ratified the Kyoto Protocol. We also find important discrepancies when comparing the effects of donor characteristics on committed versus disbursed mitigation finance (as a share of aid). For the latter, only commitment to the Kyoto Protocol appears to be of high statistical significance

    REFERQUAL: A pilot study of a new service quality assessment instrument in the GP Exercise Referral scheme setting

    Get PDF
    Background The development of an instrument accurately assessing service quality in the GP Exercise Referral Scheme (ERS) industry could potentially inform scheme organisers of the factors that affect adherence rates leading to the implementation of strategic interventions aimed at reducing client drop-out. Methods A modified version of the SERVQUAL instrument was designed for use in the ERS setting and subsequently piloted amongst 27 ERS clients. Results Test re-test correlations were calculated via Pearson's 'r' or Spearman's 'rho', depending on whether the variables were Normally Distributed, to show a significant (mean r = 0.957, SD = 0.02, p < 0.05; mean rho = 0.934, SD = 0.03, p < 0.05) relationship between all items within the questionnaire. In addition, satisfactory internal consistency was demonstrated via Cronbach's 'α'. Furthermore, clients responded favourably towards the usability, wording and applicability of the instrument's items. Conclusion REFERQUAL is considered to represent promise as a suitable tool for future evaluation of service quality within the ERS community. Future research should further assess the validity and reliability of this instrument through the use of a confirmatory factor analysis to scrutinise the proposed dimensional structure

    The impact of Chinese lifestyle and culture on tourism in China

    No full text

    Influence Of HF2V Damping Devices On The Performance Of The SAC3 Building Subjected To The SAC Ground Motion Suites

    Get PDF
    Recent advances in energy dissipation for structural systems can create structural connections that undergo zero sacrificial energy absorbing damage, even at extreme story drifts. However, questions exist around the ability of such structures to re-center after a major event. In this paper, the seismic performance of the as-designed SAC LA3 seismic frame with rigid moment connections at the beam ends is compared with the same frame using semi-rigid connections with high force-to-volume (HF2V) lead dissipators. Non-linear dynamic analysis is preformed using Abaqus™. With respect to re-centering, the presence of the gravity frames in the model is also considered. It was found that the placement of dissipators, ignoring the effect of gravity frames, caused a 12% increase in period due to the decreased stiffness of the connections. During design level ground shaking the semi-rigid connections with HF2V dissipators have slightly lower accelerations, up to an 80% increase in peak drift, and a 200% increase in the permanent displacement compared to the as-designed case, but no structural damage is expected. When gravity frames are considered, the floor accelerations decrease further, the peak displacements do not significantly change, but the residual storey drift ratios reduce to approximately 0.17%. This result is less than one half that of the as-designed frame, where typically gravity frame effects are not considered. The addition of braces with a stiffness 20% of the pushover stiffness ensures that the structures can re-center after any given event to within construction error. The realistic non-linear dynamic analyses combining HF2V dissipators with gravity frames and well-designed non-structural elements creates a system with almost no structural damage and low residual displacements

    Experimentally Validated FEA Models of HF2V Damage Free Steel Connections for Use in Full Structural Analyses

    Get PDF
    The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations

    An analysis of catering operations within NHS acute hospitals

    No full text

    An analysis of catering operations within NHS acute hospitals

    No full text
    corecore