4 research outputs found

    99mTc-HMPAO perfusion SPECT/CT in the diagnosis of brain death

    Get PDF
    This report describes a case of brain death (BD) evaluated by 99mTc-hexamethylpropylene amine oxime (HMPAO) single photon emission tomography/computed tomography (SPECT/CT). A 16-year-old boy with a history of rapid unexpected brain herniation due to pilocytic astrocytoma underwent 99mTc-HMPAO SPECT/CT for evaluation of brain death in the context of organ donation. Flow images demonstrated lack of blood flow to the brain, and delayed images showed absence of demonstrable radionuclide activity within the brain. SPECT/CT confirmed absence of tracer accumulation, and was deemed helpful for evaluation of the brain stem. 99mTc-HMPAO SPECT/CT is a valuable tool enabling imaging-based confirmation of BD

    Beta-1-Adrenergic Receptor Antibodies in Acute Coronary Syndrome: Is Less Sometimes More?

    Get PDF
    Background: Anti-beta-1-adrenergic receptor antibodies (anti-β1AR Ab) are associated with ischemic cardiomyopathies (ICM). Evidence continues to emerge supporting an autoimmune component to various cardiac diseases. This study compares anti-β1AR Ab concentrations in patients with different entities of acute coronary syndromes (ACS) to asymptomatic non-ACS patients with positron-emission computed tomography (PET/CT)-proven atherosclerosis, and healthy controls.Methods: Serum anti-β1AR Ab IgG concentrations were measured in 212 ACS patients, 100 atherosclerosis patients, and 62 controls using ELISA. All ACS patients underwent coronary angiography. All 374 patients participating completed a structured questionnaire regarding traditional cardiovascular risk factors. ACS patients were followed up for 6 months.Results: Patients with ACS exhibited lower anti-β1AR Ab levels compared to patients with atherosclerosis or healthy controls (both p < 0.001). No differences in the ab levels were evident between healthy controls and patients with atherosclerosis. In the ACS groups, lower concentrations were found in patients with ST-elevation myocardial infarction (STEMI) (0.67 μg/ml) compared to patients with angina pectoris (AP) and non-ST elevation myocardial infarction (NSTEMI) (both 0.76 μg/ml, p = 0.008). Anti-β1AR Ab levels ≤ 0.772 μg/ml were predictive for death and reinfarction (AUC 0.77, p = 0.006). No significant correlations between anti-β1AR Ab levels and atherosclerotic burden or traditional cardiovascular risk factors were identified.Conclusions: Lower anti-β1AR Ab concentrations appear to characterize ACS phenotypes and could serve as diagnostic and prognostic markers independent from traditional risk factors for atheroscle. The prognostic predictive value of anti-β1AR Ab in ACS remains to be confirmed in larger studies

    Participation of the spleen in the IgA immune response in the gut.

    No full text
    The role of the spleen in the induction of an immune response to orally administered antigens is still under discussion. Although it is well known that after oral antigen administration specific germinal centres are not only formed in the Peyers patches (PP) and the mesenteric lymph nodes (mLN) but also in the spleen, there is still a lack of functional data showing a direct involvement of splenic B cells in an IgA immune response in the gut. In addition, after removal of mLN a high level of IgA+ B cells was observed in the gut. Therefore, in this study we analysed the role of the spleen in the induction of IgA+ B cells in the gut after mice were orally challenged with antigens. Here we have shown that antigen specific splenic IgM+ B cells after in vitro antigen stimulation as well as oral immunisation of donor mice were able to migrate into the gut of recipient mice, where they predominantly switch to IgA+ plasma cells. Furthermore, stimulation of recipient mice by orally administered antigens enhanced the migration of the splenic B cells into the gut as well as their switch to IgA+ plasma cells. Removal of the mLN led to a higher activation level of the splenic B cells. Altogether, our results imply that splenic IgM+ B cells migrate in the intestinal lamina propria, where they differentiate into IgA+ plasma cells and subsequently proliferate. In conclusion, we demonstrated that the spleen plays a major role in the gut immune response serving as a reservoir of immune cells that migrate to the site of antigen entrance
    corecore