5 research outputs found

    Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline

    No full text
    Abstract Background The 3′ untranslated regions (UTRs) of mRNAs play a major role in post-transcriptional regulation of gene expression. Selection of transcript cleavage and polyadenylation sites is a dynamic process that produces multiple transcript isoforms for the same gene within and across different cell types. Using LITE-Seq, a new quantitative method to capture transcript 3′ ends expressed in vivo, we have characterized sex- and cell type-specific transcriptome-wide changes in gene expression and 3′UTR diversity in Caenorhabditis elegans germline cells undergoing proliferation and differentiation. Results We show that nearly half of germline transcripts are alternatively polyadenylated, that differential regulation of endogenous 3′UTR variants is common, and that alternative isoforms direct distinct spatiotemporal protein expression patterns in vivo. Dynamic expression profiling also reveals temporal regulation of X-linked gene expression, selective stabilization of transcripts, and strong evidence for a novel developmental program that promotes nucleolar dissolution in oocytes. We show that the RNA-binding protein NCL-1/Brat is a posttranscriptional regulator of numerous ribosome-related transcripts that acts through specific U-rich binding motifs to down-regulate mRNAs encoding ribosomal protein subunits, rRNA processing factors, and tRNA synthetases. Conclusions These results highlight the pervasive nature and functional potential of patterned gene and isoform expression during early animal development

    In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics

    Get PDF
    International audienceStudying protein interactions in whole organisms is fundamental to understanding development. Here, we combine in vivo expressed GFP-tagged proteins with quantitative proteomics to identify protein-protein interactions of selected key proteins involved in early C. elegans embryogenesis. Co-affinity purification of interaction partners for eight bait proteins resulted in a pilot in vivo interaction map of proteins with a focus on early development. Our network reflects known biology and is highly enriched in functionally relevant interactions. To demonstrate the utility of the map, we looked for new regulators of P granule dynamics and found that GEI-12, a novel binding partner of the DYRK family kinase MBK-2, is a key regulator of P granule formation and germline maintenance. Our data corroborate a recently proposed model in which the phosphorylation state of GEI-12 controls P granule dynamics. In addition, we find that GEI-12 also induces granule formation in mammalian cells, suggesting a common regulatory mechanism in worms and humans. Our results show that in vivo interaction proteomics provides unique insights into animal development

    A compendium of RNA-binding motifs for decoding gene regulation

    No full text
    RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes
    corecore