60 research outputs found

    Pandemic influenza A(H1N1) 2009 outbreak in a residential school at Panchgani, Maharashtra, India

    Get PDF
    Background & objectives: An outbreak of influenza was investigated between June 24 and July 30, 2009 in a residential school at Panchgani, Maharashtra, India. The objectives were to determine the aetiology, study the clinical features in the affected individuals and, important epidemiological and environmental factors. The nature of public health response and effectiveness of the control measures were also evaluated. Methods: Real time reverse transcriptase polymerase chain reaction was performed on throat swabs collected from 82 suspected cases to determine the influenza types (A or B) and sub-types [pandemic (H1N1) 2009, as well as seasonal influenza H1N1, H3N2]. Haemagglutination inhibition assay was performed on serum samples collected from entire school population (N = 415) to detect antibodies for pandemic (H1N1) 2009, seasonal H1N1, H3N2 and influenza B/Yamagata and B/Victoria lineages. Antibody titres ≥ 10 for pandemic (H1N1) 2009 and ≥ 20 for seasonal influenza A and B were considered as positive for these viruses. Results: Clinical attack rate for influenza-like illness was 71.1 per cent (295/415). The attack rate for pandemic (H1N1) 2009 cases was 42.4 per cent (176/415). Throat swabs were collected from 82 cases, of which pandemic (H1N1) 2009 virus was detected in 15 (18.3%), influenza type A in (6) 7.4 per cent and influenza type B only in one case. A serosurvey carried out showed haemagglutination inhibition antibodies to pandemic (H1N1) 2009 in 52 per cent (216) subjects in the school and 9 per cent (22) in the community. Interpretation & conclusion: Our findings confirmed an outbreak of pandemic (H1N1) 2009 due to local transmission among students in a residential school at Panchgani, Maharashtra, India

    Measurements of the Electron-Helicity Dependent Cross Sections of Deeply Virtual Compton Scattering with CEBAF at 12 GeV

    Get PDF
    We propose precision measurements of the helicity-dependent and helicity independent cross sections for the ep->epg reaction in Deeply Virtual Compton Scattering (DVCS) kinematics. DVCS scaling is obtained in the limits Q^2>>Lambda_{QCD}^2, x_Bj fixed, and -\Delta^2=-(q-q')^22 GeV^2, W>2 GeV, and -\Delta^21 GeV^2. We will use our successful technique from the 5.75 GeV Hall A DVCS experiment (E00-110). With polarized 6.6, 8.8, and 11 GeV beams incident on the liquid hydrogen target, we will detect the scattered electron in the Hall A HRS-L spectrometer (maximum central momentum 4.3 GeV/c) and the emitted photon in a slightly expanded PbF_2 calorimeter. In general, we will not detect the recoil proton. The H(e,e'g)X missing mass resolution is sufficient to isolate the exclusive channel with 3% systematic precision

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore