35 research outputs found

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    In vivo mucoadhesive strength appraisal of gum Manilkara zapota

    Get PDF
    The mucilage (MMZ) extracted from the seeds of Manilkara zapota(Linn.) P. Royen syn. using maceration techniques was evaluated for mucoadhesive strength by various in vitro and in vivo methods. The result showed that mucoadhesive strength of seeds mucilage have comparable property toward natural and synthetic polymers such as Guar Gum and hydroxyl propyl methyl cellulose (HPMC E5LV) under the experimental conditions used in this study. Briefly, it could be concluded that the seed mucilage of Manilkara zapota can be used as a pharmaceutical excipient in oral mucoadhesive drug delivery systems. Further, it may be appropriate to study the changes in these properties after chemical modifications

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    Electrical and Electromagnetic Interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films

    No full text
    The hexagonal boron nitride nanoparticles (h-BNNPs) reinforced flexible polyvinylidene fluoride (PVDF) nanocomposite films were prepared via a simple and versatile solution casting method. The morphological, thermal and electrical properties of h-BNNPs/PVDF nanocomposite films were elucidated. The electromagnetic interference (EMI) shielding properties of prepared nanocomposite films were investigated in the X-band frequency regime (8–12 GHz). The EMI shielding effectiveness (SE) was increased from 1 dB for the PVDF film to 11.21 dB for the h-BNNPs/PVDF nanocomposite film containing 25 wt% h-BNNPs loading. The results suggest that h-BNNPs/PVDF nanocomposite films can be used as lightweight and low-cost EMI shielding materials.The author, Dr. M. Basheer Ahamed would like to acknowledge Department of Science and Technology- Science and Engineering Research Board (DST-SERB), Government of India (project No: EMR/2016/006705) for providing financial assistance to carry out this research work.Scopu

    Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles

    No full text
    In this study, zinc sulphide nanoparticles (ZnS NPs) have been synthesized by green synthesis approach. These ZnS NPs were used as nanofiller to fabricate polyvinyl alcohol (PVA) based nanocomposite films via solution casting method. The PVA/ZnS nanocomposite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy and thermogravimetric analysis. The results from these characterization techniques evidenced the improvement in structural, morphological and thermal properties of PVA/ZnS nanocomposite films and also confirmed the incorporation of ZnS NPs in the PVA matrix. In addition to that, the dielectric properties of the PVA/ZnS nanocomposite films were investigated for different frequencies (50 Hz-1 MHz) and temperatures (40-140 C) using an impedance analyzer. The values of dielectric constant and dielectric loss of PVA/ZnS nanocomposite films were observed to be 328.93 (50 Hz, 140 C) and 6.02 (50 Hz, 140 C) with 3 wt% ZnS NPs content. This enhancement in dielectric properties demonstrated the good interaction between ZnS NPs and PVA matrix. The aforementioned results evidenced that the ZnS NPs were homogeneously distributed within the PVA matrix.Scopu

    Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites

    No full text
    Germanium dioxide (GeO2) nanoparticles reinforced poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) blend nanocomposite films were prepared using solution casting technique. The PVC/PMMA/GeO2 nanocomposite films were characterized by FTIR�Fourier transform infrared spectroscopy, XRD�X-ray diffraction and TGA�thermogravimetric analysis. The morphological and structural characteristics were examined using POM�polarized optical microscopy, SEM�scanning electron microscopy and AFM�atomic force microscopy. The dielectric properties and the electromagnetic interference (EMI) shielding effectiveness of these nanocomposite films were also studied. The EMI shielding properties were studied in the broadband microwave region of X (8�12�GHz) and Ku band (12�18�GHz). From SEM micrographs, the porous network was unfolded that enriches the absorption behaviour. The EMI shielding effectiveness of ? 17.1 dB was observed for PVC/PMMA/GeO2 nanocomposite film with 10 wt % GeO2 loading and the nanocomposite film with 8�wt% of GeO2 loading showed the potential to attenuate electromagnetic waves through absorption up to 75%. Hence, the EMI shielding results demonstrate that the PVC/PMMA/GeO2 nanocomposite films can be used as an absorption dominating shielding materials. � 2018, Springer Science+Business Media, LLC, part of Springer Nature.Scopu

    Natural polymer based composite membranes for water purification: a review

    No full text
    The ever-growing population, environmental pollution and ecological degradation cause suffering to human race due to chemicals and other water contaminants such as chemicals, heavy metals, pesticides and insecticides. Hence, attempts are made to purify water by advanced technologies employing smart materials. The advanced nanotechnology aids to control structural and chemical functionality in the composite materials which potentially escort novel membrane module for water purification. This review focuses on the existing membrane technology involved in water purification and portrays molecular-level rationally designed approaches for engineering biopolymer based selective membranes. - 2019, - 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Scopu
    corecore