471 research outputs found

    Kondo effect and channel mixing in oscillating molecules

    Full text link
    We investigate the electronic transport through a molecule in the Kondo regime. The tunneling between the electrode and the molecule is asymmetrically modulated by the oscillations of the molecule, i.e., if the molecule gets closer to one of the electrodes the tunneling to that electrode will increase while for the other electrode it will decrease. The system is described by a two-channel Anderson model with phonon-assisted hybridization, which is solved with the Wilson numerical renormalization group method. The results for several functional forms of tunneling modulation are presented. For a linearized modulation the Kondo screening of the molecular spin is caused by the even or odd conduction channel. At the critical value of the electron-phonon coupling an unstable two-channel Kondo fixed point is found. For a realistic modulation the spin at the molecular orbital is Kondo screened by the even conduction channel even in the regime of strong coupling. A universal consequence of the electron-phonon coupling is the softening of the phonon mode and the related instability to perturbations that break the left-right symmetry. When the frequency of oscillations decreases below the magnitude of such perturbation, the molecule is abruptly attracted to one of the electrodes. In this regime, the Kondo temperature is enhanced and, simultaneously, the conductance through the molecule is suppressed.Comment: published versio

    Deleted HTLV Retrovirus May Be Involved in the Development of Cutaneous T-Cell Lymphomas

    Get PDF

    New Bacteriological Patterns in Primary Infected Aorto-iliac Aneurysms: A Single-centre Experience

    Get PDF
    AbstractObjectivesTo assess causative pathogens and surgical outcomes in patients with primary infected aorto-iliac aneurysms at our institution.DesignRetrospective study of patients treated at a university hospital between 1992 and 2009.ResultsWe identified 26 patients (median age, 63 years) with primary infected aneurysms on the aorta (descending thoracic, n = 2; thoraco-abdominal, n = 3; suprarenal, n = 2; infrarenal, n = 15) or iliac arteries (n = 4). Among them, 22 were symptomatic, including 13 with ruptured aneurysms. The causative organisms, identified in 25/26 patients, were Campylobacter fetus, n = 6; Streptococcus pneumoniae, n = 4; Listeria, n = 3; Salmonella, n = 2; Mycobacterium tuberculosis, n = 2; Staphylococcus aureus, n = 1; and other, n = 7. Immune suppression was a feature in 10 (38.4%) patients. Revascularisation was performed in situ in 23 patients (10 allografts, eight grafts, three superficial femoral veins, and 2 stentgrafts) and by extra-anatomic bypass in three patients.Hospital mortality was 23% (in situ group, 17.4%; extra-anatomic group, 66.7%; χ2 Yates, P = 0.24). During follow-up in the 20 survivors (median, 48.5 months), there were two non-infection-related deaths (five and 24 months) and six (30%) vascular complications.ConclusionsThe bacteriological spectrum of primary infected aorto-iliac aneurysms was wider than previously reported. The availability of new diagnostic tests and increased prevalence of immunosuppression may explain this finding

    Noncoding RNA

    Get PDF
    International audienc

    Inferior Mesenteric Artery Stenting as a Novel Treatment for Chronic Mesenteric Ischemia in Patients with an Occluded Superior Mesenteric Artery and Celiac Trunk

    Get PDF
    IntroductionChronic mesenteric ischemia (CMI) is a challenging problem, with revascularization the mainstay of treatment. Management of CMI is especially challenging in the patient with superior mesenteric artery (SMA) and celiac artery (CA) occlusions.ReportWe report a case series of four patients with chronic mesenteric ischemia who were not candidates for CA or SMA revascularization who were successfully treated with inferior mesenteric artery (IMA) angioplasty and stent placement to improve collateral circulation and palliate symptoms.DiscussionTo our knowledge, this is the largest case series to date reporting the use of an IMA stent to improve collateral circulation in patients with CMI

    Quantum Criticality in doped CePd_1-xRh_x Ferromagnet

    Full text link
    CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C= 6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a detailed investigation on the suppression of the ferromagnetic (F) phase in this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat (C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration between x = 0.87 and 0.90. The quantum criticality of this region is recognized by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one at x = 0.87. At high temperature, this system shows the onset of valence instability revealed by a deviation from Vegard's law (at x_V~0.75) and increasing hybridization effects on high temperature \chi_dc and \rho. Coincidentally, a Fermi liquid contribution to the specific heat arises from the MV component, which becomes dominant at the CeRh limit. In contrast to antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather the mentioned power law divergence, which coincides with a change of sign of \beta. The coexistence of F and MV components and the sudden changes in the T dependencies are discussed in the context of randomly distributed magnetic and Kondo couplings.Comment: 11 pages, 11 figure

    Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn_(3-x)Sn_x

    Full text link
    In this paper we report a comprehensive study of the magnetic susceptibility (\chi), resistivity (\rho), and specific heat (C_P), down to 0.5 K of the cubic CeIn_(3-x)Sn_x alloy. The ground state of this system evolves from antiferromagnetic (AF) in CeIn_3(T_N=10.2 K) to intermediate-valent in CeSn_3, and represents the first example of a Ce-lattice cubic non-Fermi liquid (NFL) system where T_N(x) can be traced down to T=0 over more than a decade of temperature. Our results indicate that the disappearance of the AF state occurs near x_c ~ 0.7, although already at x ~ 0.4 significant modifications of the magnetic ground state are observed. Between these concentrations, clear NFL signatures are observed, such as \rho(T)\approx \rho_0 + A T^n (with n<1.5) and C_P(T)\propto -T ln(T) dependencies. Within the ordered phase a first order phase transition occurs for 0.25 < x < 0.5. With larger Sn doping, different weak \rho(T) dependencies are observed at low temperatures between x=1 and x=3 while C_P/T shows only a weak temperature dependence.Comment: 7 pages, 7 figures. Accepted in Eur. J. Phys.

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.
    corecore