95 research outputs found

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap

    Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b

    Full text link
    Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320 - 800 nm and 520 - 950 nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589 nm), and our observations do not have sufficient precision to study the resonance line of K at 770 nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520 - 950 nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table

    The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars

    Get PDF
    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. The combined FUV+NUV spectra are publically available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line fluxes comprise ~37-75% of the total 1150-3100A flux from most M dwarfs; > 10^{3} times the solar value. The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be ~0.5-3 for all M dwarfs in our sample, > 10^{3} times the solar ratio. For the four stars with moderate signal-to-noise COS time-resolved spectra, we find UV emission line variability with amplitudes of 50-500% on 10^{2} - 10^{3} s timescales. Finally, we observe relatively bright H2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). Additional modeling work is needed to differentiate between a stellar photospheric or possible exoplanetary origin for the hot (T(H2) \approx 2000-4000 K) molecular gas observed in these objects.Comment: ApJ, accepted. 16 pages, 10 figures. On-line data at: http://cos.colorado.edu/~kevinf/muscles.htm

    Phase curves of WASP-33b and HD 149026b and a New Correlation Between Phase Curve Offset and Irradiation Temperature

    Get PDF
    We present new 3.6 and 4.5 μm\mu m Spitzer phase curves for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As part of this analysis, we develop a new variant of pixel level decorrelation that is effective at removing intrapixel sensitivity variations for long observations (>10 hours) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we measure eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 μm\mu m and 4.5 μm\mu m. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo and an unusually high recirculation efficiency. We also compare our results to predictions from general circulation models, and find that while neither are a good match to the data, the discrepancies for HD 149026b are especially large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, heat transport efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature--the former drops with increasing temperature until around 3400 K, and rises thereafter. Although some aspects of this trend are mirrored in the circulation models, there are notable differences that provide important clues for future modeling efforts

    A Near-Infrared Transmission Spectrum for the Warm Saturn HAT-P-12b

    Get PDF
    We present a HST WFC3 transmission spectrum for the transiting exoplanet HAT-P-12b. This warm (1000 K) sub-Saturn-mass planet has a smaller mass and a lower temperature than the hot-Jupiters that have been studied so far. We find that the planet's measured transmission spectrum lacks the expected water absorption feature for a hydrogen-dominated atmosphere, and is instead best-described by a model with high-altitude clouds. Using a frequentist hypothesis testing procedure, we can rule out a hydrogen-dominated cloud free atmosphere to 4.9σ. When combined with other recent WFC3 studies, our observations suggest that clouds may be common in exoplanetary atmospheres

    Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    Get PDF
    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity log(L_*/L_☉)= -5.16 ± 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai–Lidov mechanism and propose additional astrometric or Rossiter–McLaughlin measurements of the system to probe the dynamical history of the system

    Spitzer Secondary Eclipses of the Dense, Modestly-irradiated, Giant Exoplanet HAT-P-20b Using Pixel-Level Decorrelation

    Get PDF
    HAT-P-20b is a giant exoplanet that orbits a metal-rich star. The planet itself has a high total density, suggesting that it may also have a high metallicity in its atmosphere. We analyze two eclipses of the planet in each of the 3.6- and 4.5 micron bands of Warm Spitzer. These data exhibit intra-pixel detector sensitivity fluctuations that were resistant to traditional decorrelation methods. We have developed a simple, powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without explicitly using - or even measuring - the fluctuations in the apparent position of the stellar image. We illustrate and validate PLD using synthetic and real data, and comparing the results to previous analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry, even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134 +/-29K, indicating inefficient longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient evidence for variability in the 4.5 micron band that the eclipses should be monitored at that wavelength by Spitzer, and this planet should be a high priority for JWST spectroscopy. All four eclipses occur about 35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and transit times with extant RV data yields e(cos{omega}) = 0.01352 (+0.00054, -0.00057), and establishes the small eccentricity of the orbit to high statistical confidence. Given the existence of a bound stellar companion, HAT-P-20b is another excellent candidate for orbital evolution via Kozai migration or other three-body mechanism.Comment: version published in ApJ, minor text and figure revision
    • …
    corecore