4,620 research outputs found

    Attitude Determination from Single-Antenna Carrier-Phase Measurements

    Full text link
    A model of carrier phase measurement (as carried out by a satellite navigation receiver) is formulated based on electromagnetic theory. The model shows that the phase of the open-circuit voltage induced in the receiver antenna with respect to a local oscillator (in the receiver) depends on the relative orientation of the receiving and transmitting antennas. The model shows that using a {\it single} receiving antenna, and making carrier phase measurements to seven satellites, the 3-axis attitude of a user platform (in addition to its position and time) can be computed relative to an initial point. This measurement model can also be used to create high-fidelity satellite signal simulators that take into account the effect of platform rotation as well as translation.Comment: 12 pages, and one figure. Published in J. Appl. Phys. vol. 91, No. 7, April 1, 200

    The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    Get PDF
    BACKGROUND: Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. METHODS: Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. RESULTS: Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. CONCLUSIONS: The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted

    Earthshine observation of vegetation and implication for life detection on other planets - A review of 2001 - 2006 works

    Full text link
    The detection of exolife is one of the goals of very ambitious future space missions that aim to take direct images of Earth-like planets. While associations of simple molecules present in the planet's atmosphere (O2O_2, O3O_3, CO2CO_2 etc.) have been identified as possible global biomarkers, we review here the detectability of a signature of life from the planet's surface, i.e. the green vegetation. The vegetation reflectance has indeed a specific spectrum, with a sharp edge around 700 nm, known as the "Vegetation Red Edge" (VRE). Moreover vegetation covers a large surface of emerged lands, from tropical evergreen forest to shrub tundra. Thus considering it as a potential global biomarker is relevant. Earthshine allows to observe the Earth as a distant planet, i.e. without spatial resolution. Since 2001, Earthshine observations have been used by several authors to test and quantify the detectability of the VRE in the Earth spectrum. The egetation spectral signature is detected as a small 'positive shift' of a few percents above the continuum, starting at 700 nm. This signature appears in most spectra, and its strength is correlated with the Earth's phase (visible land versus visible ocean). The observations show that detecting the VRE on Earth requires a photometric relative accuracy of 1% or better. Detecting something equivalent on an Earth-like planet will therefore remain challenging, moreover considering the possibility of mineral artifacts and the question of 'red edge' universality in the Universe.Comment: Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006) to appear in a hardcopy volume of the ISSI Space Science Series, Eds, J. Bada et al., and also in an issue of Space Science Reviews. 13 pages, 8 figures, 1 tabl

    Dynamics of Fluid Vesicles in Oscillatory Shear Flow

    Full text link
    The dynamics of fluid vesicles in oscillatory shear flow was studied using differential equations of two variables: the Taylor deformation parameter and inclination angle θ\theta. In a steady shear flow with a low viscosity ηin\eta_{\rm {in}} of internal fluid, the vesicles exhibit steady tank-treading motion with a constant inclination angle θ0\theta_0. In the oscillatory flow with a low shear frequency, θ\theta oscillates between ±θ0\pm \theta_0 or around θ0\theta_0 for zero or finite mean shear rate γ˙m\dot\gamma_{\rm m}, respectively. As shear frequency fγf_{\gamma} increases, the vesicle oscillation becomes delayed with respect to the shear oscillation, and the oscillation amplitude decreases. At high fγf_{\gamma} with γ˙m=0\dot\gamma_{\rm m}=0, another limit-cycle oscillation between θ0−π\theta_0-\pi and −θ0-\theta_0 is found to appear. In the steady flow, θ\theta periodically rotates (tumbling) at high ηin\eta_{\rm {in}}, and θ\theta and the vesicle shape oscillate (swinging) at middle ηin\eta_{\rm {in}} and high shear rate. In the oscillatory flow, the coexistence of two or more limit-cycle oscillations can occur for low fγf_{\gamma} in these phases. For the vesicle with a fixed shape, the angle θ\theta rotates back to the original position after an oscillation period. However, it is found that a preferred angle can be induced by small thermal fluctuations.Comment: 11 pages, 13 figure
    • …
    corecore