49 research outputs found

    A Kinetic Analysis of The Inhibition of FOX-4 β-Lactamase, A Plasmid-Mediated AmpC Cephalosporinase, By Monocyclic β-lactams and Carbapenems

    Get PDF
    Abstract: Objectives: Class C β-lactamases are prevalent among Enterobacteriaceae; however, these enzymes are resistant to inactivation by commercially available β-lactamase inhibitors. In order to find novel scaffolds to inhibit class C β-lactamases, the comparative efficacy of monocyclic β-lactam antibiotics (aztreonam and the siderophore monosulfactam BAL30072), the bridged monobactam β-lactamase inhibitor BAL29880, and carbapenems (imipenem, meropenem, doripenem and ertapenem) were tested in kinetic assays against FOX-4, a plasmid-mediated class C β-lactamase (pmAmpC). Methods: The FOX-4 β-lactamase was purified. Steady-state kinetics, electrospray ionization mass spectrometry (ESI-MS) and ultraviolet difference (UVD) spectroscopy were conducted using the β-lactam scaffolds described. Results: The Ki values for the monocyclic β-lactams against FOX-4 β-lactamase were 0.04 ± 0.01 μM (aztreonam) and 0.66 ± 0.03 μM (BAL30072), and the Ki value for the bridged monobactam BAL29880 was 8.9 ± 0.5 μM. For carbapenems, the Ki values ranged from 0.27 ± 0.05 μM (ertapenem) to 2.3 ± 0.3 μM (imipenem). ESI-MS demonstrated the formation of stable covalent adducts when the monocyclic β-lactams and carbapenems were reacted with FOX-4 β-lactamase. UVD spectroscopy suggested the appearance of different chromophoric intermediates. Conclusions: Monocyclic β-lactam and carbapenem antibiotics are effective mechanism-based inhibitors of FOX-4 β-lactamase, a clinically important pmAmpC, and provide stimulus for the development of new inhibitors to inactivate plasmidic and chromosomal class C β-lactamases

    Ring Expansion of Cyclobutylmethylcarbenium Ions to Cyclopentane or Cyclopentene Derivatives and Metal-Promoted Analogous Rearrangements

    Full text link

    In Vitro Properties of BAL30072, a Novel Siderophore Sulfactam with Activity against Multiresistant Gram-Negative Bacilli▿

    No full text
    BAL30072 is a new monocyclic β-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with β-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC90s were 4 μg/ml for MDR Acinetobacter spp. and 8 μg/ml for MDR P. aeruginosa, whereas the MIC90 of meropenem for the same sets of isolates was >32 μg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-β-lactamases that conferred resistance to all other β-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-β-lactamase. Unlike other monocyclic β-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam
    corecore