613 research outputs found

    Reaching Consensus Under a Deadline

    Full text link
    Committee decisions are complicated by a deadline, e.g., the next start of a budget, or the beginning of a semester. In committee hiring decisions, it may be that if no candidate is supported by a strong majority, the default is to hire no one - an option that may cost dearly. As a result, committee members might prefer to agree on a reasonable, if not necessarily the best, candidate, to avoid unfilled positions. In this paper, we propose a model for the above scenario - Consensus Under a Deadline (CUD)- based on a time-bounded iterative voting process. We provide convergence guarantees and an analysis of the quality of the final decision. An extensive experimental study demonstrates more subtle features of CUDs, e.g., the difference between two simple types of committee member behavior, lazy vs.~proactive voters. Finally, a user study examines the differences between the behavior of rational voting bots and real voters, concluding that it may often be best to have bots play on the voters' behalf

    Spintronics for electrical measurement of light polarization

    Full text link
    The helicity of a circularly polarized light beam may be determined by the spin direction of photo-excited electrons in a III-V semiconductor. We present a theoretical demonstration how the direction of the ensuing electron spin polarization may be determined by electrical means of two ferromagnet/semiconductor Schottky barriers. The proposed scheme allows for time-resolved detection of spin accumulation in small structures and may have a device application.Comment: Revised version, 8 two-column pages, 5 figures; Added: a comprehensive time dependent analysis, figures 3b-3c & 5, equations 6 & 13-16 and 3 references. submitted to Phys. Rev.

    Hydro-meteorological drivers and sources of suspended sediment flux in the proglacial zone of the retreating Castle Creek glacier, Cariboo Mountains, British Columbia, Canada

    Get PDF
    Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro-glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time-series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro-meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para-glacial sediment sources in the pro-glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro-glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro-meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro-glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd

    Electrical expression of spin accumulation in ferromagnet/semiconductor structures

    Full text link
    We treat the spin injection and extraction via a ferromagnetic metal/semiconductor Schottky barrier as a quantum scattering problem. This enables the theory to explain a number of phenomena involving spin-dependent current through the Schottky barrier, especially the counter-intuitive spin polarization direction in the semiconductor due to current extraction seen in recent experiments. A possible explanation of this phenomenon involves taking into account the spin-dependent inelastic scattering via the bound states in the interface region. The quantum-mechanical treatment of spin transport through the interface is coupled with the semiclassical description of transport in the adjoining media, in which we take into account the in-plane spin diffusion along the interface in the planar geometry used in experiments. The theory forms the basis of the calculation of spin-dependent current flow in multi-terminal systems, consisting of a semiconductor channel with many ferromagnetic contacts attached, in which the spin accumulation created by spin injection/extraction can be efficiently sensed by electrical means. A three-terminal system can be used as a magnetic memory cell with the bit of information encoded in the magnetization of one of the contacts. Using five terminals we construct a reprogrammable logic gate, in which the logic inputs and the functionality are encoded in magnetizations of the four terminals, while the current out of the fifth one gives a result of the operation.Comment: A review to appear in Mod. Phys. Lett.

    Emergence of 6-particle "hexciton'' states in WS2_2 and MoSe2_2 monolayers

    Full text link
    When doped with a high density of mobile charge carriers, monolayer transition-metal dichalcogenide (TMD) semiconductors can host new types of composite many-particle exciton states that do not exist in conventional semiconductors. Such multi-particle bound states arise when a photoexcited electron-hole pair couples to not just a single Fermi sea that is quantum-mechanically distinguishable (as for the case of conventional charged excitons or trions), but rather couples simultaneously to \textit{multiple} Fermi seas, each having distinct spin and valley quantum numbers. Composite six-particle ``hexciton'' states were recently identified in electron-doped WSe2_2 monolayers, but under suitable conditions they should also form in all other members of the monolayer TMD family. Here we present spectroscopic evidence demonstrating the emergence of many-body hexcitons in charge-tunable WS2_2 monolayers (at the A-exciton) and MoSe2_2 monolayers (at the B-exciton). The roles of distinguishability and carrier screening on the stability of hexcitons are discussed.Comment: 7 pages, 3 fig

    Optical spin injection and spin lifetime in Ge heterostructures

    Full text link
    We demonstrate optical orientation in Ge/SiGe quantum wells and study their spin properties. The ultrafast electron transfer from the center of the Brillouin zone to its edge allows us to achieve high spin-polarization efficiencies and to resolve the spin dynamics of holes and electrons. The circular polarization degree of the direct-gap photoluminescence exceeds the theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and light holes states, respectively. The spin lifetime of holes at the top of the valence band is found to be ~0.5 ps and it is governed by transitions between heavy and light hole states. Electrons at the bottom of the conduction band, on the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical analysis of the electrons spin relaxation indicates that phonon-induced intervalley scattering dictates the spin lifetime.Comment: 5 pages, 3 figure

    Graphite and graphene as perfect spin filters

    Get PDF
    Based upon the observations (i) that their in-plane lattice constants match almost perfectly and (ii) that their electronic structures overlap in reciprocal space for one spin direction only, we predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. The spin filtering is quite insensitive to roughness and disorder. The formation of a chemical bond between graphite and the open dd-shell transition metals that might complicate or even prevent spin injection into a single graphene sheet can be simply prevented by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin injection property
    corecore