5 research outputs found

    Étude des collisions dĂ©polarisant les raies du "deuxiĂšme spectre'' du Soleil. DĂ©veloppement et exploitation d'une nouvelle mĂ©thode thĂ©orique.

    No full text
    The spectrum of the linear polarization observed close to the solar limb (second solar spectrum) shows structures rich in new information. The depolarization rates by collisions with neutral hydrogen atoms are needed in order to quantitatively interpret this spectrum. Very few depolarization rates have currently been computed. To evaluate the effect of these collisions, methods capable of giving reasonable results for many levels of atoms or ions and which are computationally efficient are urgently needed. The goal of this thesis is to try to give an answer to this problem.In this thesis, we have developed a new semi-classical method for calculating the depolarization rates and polarization transfer rates of spectral lines of neutral and ionised atoms by collisions with atomic hydrogen (Derouich et al. 2003a; Derouich et al. 2003b; Derouich et al. 2004a; Derouich et al. 2004b). Our method extends the one developed and applied with success during 1990's for collisional line broadening by atomic hydrogen by Anstee, Barklem and O'Mara. A great advantage of the present method is that it is not specific for a given perturbed atom/ion and may be easily applied to any level of any neutral and singly ionised atom. In particular, our method can be applied to heavy atoms/ions. We have developed a code to compute the collisional depolarization and polarization transfer rates with our new collisional method. We have been inspired by the line-broadening code of Anstee, Barklem and O'Mara. We have calculated depolarization and polarization transfer rates for pp-atomic levels (l(l=1), dd-atomic levels (l(l=2) and ff-atomic levels (l(l=3). Our results are given in the form of tables allowing computation of the depolarization rates for many levels by simple interpolation or extrapolation.We have extended our method and the numerical code associated with it to spectral lines of singly ionised atoms.In order to validate our theory, we have compared our results to quantum chemistry calculations when possible. The differences with quantum chemistry results are less than 20 %\% for our depolarization rates obtained in the case of NaI, MgI, and CaI atoms and CaII ion. Indeed, we have investigated in the interesting case of SrI 5p5 p 1P1^1P_{1}: an error of 20-30 \% is expected with respect to results based on hybrid interaction potentials assumed as a best estimate (section 6.5.1). We have also compared our results to the depolarization rates calculated with the Van der Waals interaction. This potential strongly underestimates the depolarization rates.As an application of our semi-classical method, we have interpreted the spectropolarimetric observations of the resonance \mbox{SrI 4607 Å} line, obtained with the THEMIS telescope in December 2002 by V. Bommier \& G. Molodij, in terms of a turbulent magnetic field. The depolarization rates calculated using our method have entered the statistical equilibrium equations coupled with the polarized radiation transfer equations. The adopted formalism was developed by Landi Degl'Innocenti, Bommier, \& Sahal-BrĂ©chot (1990). The determination of the magnetic field strongly depends on the microturbulent and macroturbulent velocities. We have obtained These velocities by comparing the theoretical profiles to the observed ones. The discrepancy between the polarization calculated in the absence of a magnetic field and the polarization observed in the SrI 4607 Å   \; line is consistent with the presence of an average magnetic field strength of 46 Gauss in the region between 200 and 300 km above the optical depth at 5000 Å   \; τ5000=1\tau_{5000}=1 level. Finally, we have shown that an error less than 20 \% on the depolarization rates corresponding to an error less than 10 \% on the value of the derived turbulent magnetic field. This error is well located within the expected error bar on the value of the magnetic field. This completely validate our semi-classical method for collisional depolarization of spectral lines by atomic hydrogen in view to the contribution to the interpretation of the second solar spectrum.Le spectre de polarisation linĂ©aire observĂ© au bord solaire (second spectre solaire) rĂ©vĂšle une structure riche d'informations. L'interprĂ©tation quantitative de ce spectre de polarisation nĂ©cessite de prendre en compte les taux de dĂ©polarisation par les collisions isotropes avec les atomes neutres d'hydrogĂšne. Ces taux sont trĂšs mal connus Ă  l'heure actuelle. Le dĂ©veloppement d'une mĂ©thode collisionnelle, applicable au grand nombre d'atomes prĂ©sents dans le second spectre solaire, et qui soit suffisamment prĂ©cise et efficace, est indispensable pour combler ce vide. L'objectif de cette thĂšse est de rĂ©pondre Ă  ce besoin urgent. Dans cette thĂšse nous avons dĂ©veloppĂ© une nouvelle mĂ©thode semi-classique pour calculer les taux de dĂ©polarisation et les taux de transfert de polarisation des raies spectrales des atomes et des ions par collisions avec les atomes neutres d'hydrogĂšne (Derouich et al. 2003a; Derouich et al. 2003b; Derouich et al. 2004a; Derouich et al. 2004b). Notre mĂ©thode est une extension de celle dĂ©veloppĂ©e et appliquĂ©e avec succĂšs aux Ă©largissement des raies par collisions avec les atomes neutres d'hydrogĂšne, dans les annĂ©es 90, par Anstee, Barklem et O'Mara. Un grand avantage de notre mĂ©thode est qu'elle n'est pas spĂ©cifique Ă  un atome/ion perturbĂ© donnĂ©; elle peut Ítre facilement appliquĂ©e Ă  n'importe quel Ă©tat de n'importe quel atome. Nous avons dĂ©veloppĂ© un code numĂ©rique pour calculer les taux de dĂ©polarisation par notre nouvelle mĂ©thode, code inspirĂ© de celui qui calcule l'Ă©largissement des raies de Anstee, Barklem et O'Mara. Nous avons calculĂ© les taux de dĂ©polarisation pour les Ă©tats pp (l=1)(l=1), dd (l=2)(l=2) et ff (l(l=3) des atomes neutres. Nous avons fourni des tableaux de donnĂ©es simples d'utilisation et permettant de dĂ©terminer les taux de dĂ©polarisation pour de nombreux niveaux par interpolation ou par extrapolation. Nous avons Ă©tendu notre mĂ©thode et le code numĂ©rique qui lui est associĂ© aux atomes une fois ionisĂ©s. Dans le but de valider notre thĂ©orie, nos rĂ©sultats ont Ă©tĂ© comparĂ©s Ă  des rĂ©sultats de chimie quantique quand cela est possible. Les diffĂ©rences entre nos taux de dĂ©polarisation et ceux obtenus par une approche de chimie quantique, dans les cas des atomes Na I, Mg I, et Ca I et l'ion Ca II, sont toujours infĂ©rieurs Ă  20 %\%. De plus, nous nous sommes intĂ©ressĂ© au cas important du SrI 5p5 p 1P1^1P_{1}: une erreur de 20-30 \% est attendue par rapport Ă  des rĂ©sultats basĂ©s sur un potentiel d'interaction hybride considĂ©rĂ© comme Ă©tant le plus prĂ©cis (section 6.5.1). Nos rĂ©sultats ont Ă©tĂ© aussi comparĂ© Ă  ceux que nous avons obtenus en utilisant un potentiel de Van der Waals. Les taux de dĂ©polarisation obtenus en utilisant ce potentiel sont largement sous-estimĂ©s. Nous avons ensuite interprĂ©tĂ© les observations des taux de polarisation linĂ©aire de la raie \mbox{SrI 4607 Å}, obtenues avec THEMIS en DĂ©cembre 2002 par V. Bommier et G. Molodij, en terme de champ magnĂ©tique turbulent. Nous avons introduit nos taux de dĂ©polarisation dans le code de transfert de rayonnement en prĂ©sence de champ magnĂ©tique associĂ© au formalisme dĂ©veloppĂ© par Landi Degl'Innocenti, Bommier et Sahal-BrĂ©chot (1990). La dĂ©termination du champ magnĂ©tique dĂ©pend de faÁon trĂšs sensible de celle des vitesses microturbulente et macroturbulente. Nous avons dĂ©terminĂ© Ces vitesses par superposition des profils des intensitĂ©s thĂ©oriques, obtenus dans l'hypothĂšse d'une atmosphĂšre non-magnĂ©tisĂ©e, Ă  ceux observĂ©s. La diffĂ©rence entre la polarisation calculĂ©e pour une atmosphĂšre non-magnĂ©tisĂ©e et la polarisation observĂ©e de la raie SrI 4607 Å   \; est cohĂ©rente avec la prĂ©sence d'un champ magnĂ©tique moyen de 46 Gauss dans les rĂ©gion entre 200 et 300 km au-dessus du niveau correspondant Ă  la profondeur optique τ5000=1\tau_{5000}=1. Enfin, nous avons montrĂ© qu'une erreur infĂ©rieure Ă  20 %\% sur les taux de dĂ©polarisation correspond Ă  une erreur infĂ©rieure Ă  10 %\% sur le champ magnĂ©tique turbulent qui en dĂ©rive. Cette erreur entre bien dans la barre d'erreur attendue sur la valeur du champ magnĂ©tique validant complĂštement notre mĂ©thode semi-classique de calcul des taux de dĂ©polarisation pour contribuer Ă  l'interprĂ©tation du second spectre du soleil

    Polarization Transfer Rates by Isotropic Collisions between Astrophysical SiO Molecule and Electrons

    No full text
    We are interested in quantum calculations of polarization transfer (PT) rates due to collisions of the SiO molecule with the electrons. We determine the inelastic PT rates associated to the transitions: X 1Σ+→3Π; X 1Σ+→3Σ+; X 1Σ+→3Δ; X 1Σ+→3Σ−. In addition, we calculate the elastic PT rates due to rotational transitions inside the electronic state X 1Σ+ which are related to observed astronomical SiO MASERs. Our PT rates are obtained through linear combination of excitation rates previously calculated for SiO-electron collisions. The calculations are performed on a collision energy grid large enough to ensure converged state-to-state rates for temperatures ranging from 1000 to 10,000 K for inelastic rates and from 5 to 5000 K for elastic rates. The dependence of the inelastic rates on temperatures is obtained analytically and given in useful form

    Polarization Transfer Rates by Isotropic Collisions between Astrophysical SiO Molecule and Electrons

    No full text
    We are interested in quantum calculations of polarization transfer (PT) rates due to collisions of the SiO molecule with the electrons. We determine the inelastic PT rates associated to the transitions: X 1Σ+→3Π; X 1Σ+→3Σ+; X 1Σ+→3Δ; X 1Σ+→3Σ−. In addition, we calculate the elastic PT rates due to rotational transitions inside the electronic state X 1Σ+ which are related to observed astronomical SiO MASERs. Our PT rates are obtained through linear combination of excitation rates previously calculated for SiO-electron collisions. The calculations are performed on a collision energy grid large enough to ensure converged state-to-state rates for temperatures ranging from 1000 to 10,000 K for inelastic rates and from 5 to 5000 K for elastic rates. The dependence of the inelastic rates on temperatures is obtained analytically and given in useful form

    Firefly: The Case for a Holistic Understanding of the Global Structure and Dynamics of the Sun and the Heliosphere

    No full text
    This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere
    corecore