17 research outputs found
Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins
International audienc
Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria
In this paper we have engineered the targeting of ScFv fragments to mitochondria and demonstrated that this can occur efficiently. This extends the range of subcellular compartments where antibody domains can be targeted in order to interfere with the action of the corresponding antigen. Moreover, we have compared the redox state of ScFv fragments targeted to the secretory compartment, the cytosol and the mitochondria, and demonstrated that cysteine residues in ScFv targeted to the secretory compartments and to the mitochondria are oxidized. On the contrary, cytosolic antibody domains are expressed in a reduced state, which is probably the reason for their lower expression levels. These pitfalls, however, do not prevent their successful utilization for intracellular immunization
Bacitracin sensing in Bacillus subtilis
The extracellular presence of antibiotics is a common threat in microbial life. Their sensitive detection and subsequent induction of appropriate resistance mechanisms is therefore a prerequisite for survival. The bacitracin stress response network of Bacillus subtilis consists of four signal-transducing systems, the two-component systems (TCS) BceRS, YvcPQ and LiaRS, and the extracytoplasmic function (ECF) sigma factor sigma(M). Here, we investigated the mechanism of bacitracin perception and the response hierarchy within this network. The BceRS-BceAB TCS/ABC transporter module is the most sensitive and efficient bacitracin resistance determinant. The ABC transporter BceAB not only acts as a bacitracin detoxification pump, but is also crucial for bacitracin sensing, indicative of a novel mechanism of stimulus perception, conserved in Firmicutes bacteria. The Bce system seems to respond to bacitracin directly (drug sensing), whereas the LiaRS TCS and sigma(M) respond only at higher concentrations and indirectly to bacitracin action (damage sensing). The YvcPQ-YvcRS system is subject to cross-activation via the paralogous Bce system, and is therefore only indirectly induced by bacitracin. The bacitracin stress response network is optimized to respond to antibiotic gradients in a way that maximizes the gain and minimizes the costs of this stress response