66 research outputs found

    R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling

    Get PDF
    We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer

    The laminin-keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s)

    Differential transcriptional invasion signatures from patient derived organoid models define a functional prognostic tool for head and neck cancer

    Get PDF
    Clinical outcome for patients suffering from HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. This is mostly due to highly invasive tumors that cause loco-regional relapses after initial therapeutic intervention and metastatic outgrowth. The molecular pathways governing the detrimental invasive growth modes in HNSCC remain however understudied. Here, we have established HNSCC patient derived organoid (PDO) models that recapitulate 3-dimensional invasion in vitro. Single cell mRNA sequencing was applied to study the differences between non-invasive and invasive conditions, and in a collective versus single cell invading PDO model. Differential expression analysis under invasive conditions in Collagen gels reveals an overall upregulation of a YAP-centered transcriptional program, irrespective of the invasion mode. However, we find that collectively invading HNSCC PDO cells show elevated levels of YAP transcription targets when compared to single cell invasion. Also, collectively invading cells are characterized by increased nuclear translocation of YAP within the invasive strands, which coincides with Collagen-I matrix alignment at the invasive front. Using gene set enrichment analysis, we identify immune cell-like migratory pathways in the single cell invading HNSCC PDO, while collective invasion is characterized by overt upregulation of adhesion and migratory pathways. Lastly, based on clinical head and neck cancer cohorts, we demonstrate that the identified collective invasion signature provides a candidate prognostic platform for survival in HNSCC. By uncoupling collective and single cell invasive programs, we have established invasion signatures that may guide new therapeutic options

    The laminin–keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111—unlike fibronectin or collagen I—impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ß4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ß4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.We thank A. Farré and the other members of IMPETUX OPTICS, S.L., for their help and expertise in the design and implementation of the optical tweezers experiments; R. Sunyer for help and advice with the microprinting experiments; S. Usieto, A. Menéndez, N. Castro, M. Purciolas and W. Haaksma for providing technical support; L. Rosetti and S. Saloustros for providing data analysis tools; and J. de Rooij, A. L. Le Roux, L. Faure, A. Labernadie, R. Oria and J. Abenza, as well as all the members of the groups of P.R.-C. and X.T. for helpful discussion. Finally, we thank G. Wiche, A. Sonnenberg and N. Montserrat for providing plasmids, antibodies or cell lines used for this work. We acknowledge funding from the Spanish Ministry of Science and Innovation (PID2021-128635NB-I00 MCIN/AEI/10.13039/501100011033 and ‘ERDF-EU A way of making Europe’ to X.T., PID2019-110949GB-I00 to M.A. and PID2019-110298GB-I00 to P.R.-C.), the European Commission (H2020-FETPROACT-01-2016-731957), the European Research Council (Adv-883739 to X.T.; CoG-681434 to M.A.; StG- 851055 to A.E.-A.), the Generalitat de Catalunya (2017-SGR-1602 to X.T. and P.R.-C.; 2017-SGR-1278 to M.A. and P.S.) and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 797621 to M.G.-G. The prize ‘ICREA Academia’ for excellence in research to M.A. and P.R.-C., Fundació la Marató de TV3 (201936-30-31 and 201903-30-31-32), and ‘la Caixa’ Foundation (LCF/PR/HR20/52400004 and ID 100010434 under agreement LCF/PR/HR20/52400004). IBEC and CIMNE are recipients of a Severo Ochoa Award of Excellence from MINCIN. A.E.M.B. was supported by a Sir Henry Wellcome Fellowship (210887/Z/18/Z). A.E.-A. receives funding from the Francis Crick Institute, which receives its core funding from the Cancer Research UK (CC2214), the UK Medical Research Council (CC2214) and the Wellcome Trust (CC2214).Peer ReviewedPostprint (published version

    Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment

    Get PDF
    The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers

    The laminin-keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals

    Intraductal cisplatin treatment in a BRCA-associated breast cancer mouse model attenuates tumor development but leads to systemic tumors in aged female mice

    Get PDF
    BRCA deficiency predisposes to the development of invasive breast cancer. In BRCA mutation carriers this risk can increase up to 80%. Currently, bilateral prophylactic mastectomy and prophylactic bilateral salpingo-oophorectomy are the only preventive, albeit radical invasive strategies to prevent breast cancer in BRCA mutation carriers. An alternative non-invasive way to prevent BRCA1-associated breast cancer may be local prophylactic treatment via the nipple. Using a non-invasive intraductal (ID) preclinical intervention strategy, we explored the use of combined cisplatin and poly (ADP)-ribose polymerase 1 (PARP1) inhibition to prevent the development of hereditary breast cancer. We show that ID cisplatin and PARP-inhibition can successfully ablate mammary epithelial cells, and this approach attenuated tumor onset in a mouse model of Brca1-associated breast cancer from 153 to 239 days. Long-term carcinogenicity studies in 150 syngeneic wild-type mice demonstrated that tumor incidence was increased in the ID treated mammary glands by 6.3% due to systemic exposure to cisplatin. Although this was only evident in aged mice (median age = 649 days), we conclude that ID cisplatin treatment only presents a safe and feasible local prevention option if systemic exposure to the chemotherapy used can be avoided

    Nuclear Kaiso Expression Is Associated with High Grade and Triple-Negative Invasive Breast Cancer

    Get PDF
    Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC) (p = 0.007), while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC) (p = 0.006). Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023), ERα negativity (p = 0.001), and the HER2-driven and basal/triple-negative breast cancers (p = 0.018). Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001) and invasive breast cancer overexpressing EGFR (p = 0.019). We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120) (p<0.01). In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005). We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC

    Small molecules to regulate the GH/IGF1 axis by inhibiting the growth hormone receptor synthesis

    Get PDF
    Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule
    • …
    corecore